4434 lines
		
	
	
		
			160 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			4434 lines
		
	
	
		
			160 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #
 | |
| # The ndarray object from _testbuffer.c is a complete implementation of
 | |
| # a PEP-3118 buffer provider. It is independent from NumPy's ndarray
 | |
| # and the tests don't require NumPy.
 | |
| #
 | |
| # If NumPy is present, some tests check both ndarray implementations
 | |
| # against each other.
 | |
| #
 | |
| # Most ndarray tests also check that memoryview(ndarray) behaves in
 | |
| # the same way as the original. Thus, a substantial part of the
 | |
| # memoryview tests is now in this module.
 | |
| #
 | |
| # Written and designed by Stefan Krah for Python 3.3.
 | |
| #
 | |
| 
 | |
| import contextlib
 | |
| import unittest
 | |
| from test import support
 | |
| from itertools import permutations, product
 | |
| from random import randrange, sample, choice
 | |
| import warnings
 | |
| import sys, array, io, os
 | |
| from decimal import Decimal
 | |
| from fractions import Fraction
 | |
| 
 | |
| try:
 | |
|     from _testbuffer import *
 | |
| except ImportError:
 | |
|     ndarray = None
 | |
| 
 | |
| try:
 | |
|     import struct
 | |
| except ImportError:
 | |
|     struct = None
 | |
| 
 | |
| try:
 | |
|     import ctypes
 | |
| except ImportError:
 | |
|     ctypes = None
 | |
| 
 | |
| try:
 | |
|     with support.EnvironmentVarGuard() as os.environ, \
 | |
|          warnings.catch_warnings():
 | |
|         from numpy import ndarray as numpy_array
 | |
| except ImportError:
 | |
|     numpy_array = None
 | |
| 
 | |
| try:
 | |
|     import _testcapi
 | |
| except ImportError:
 | |
|     _testcapi = None
 | |
| 
 | |
| 
 | |
| SHORT_TEST = True
 | |
| 
 | |
| 
 | |
| # ======================================================================
 | |
| #                    Random lists by format specifier
 | |
| # ======================================================================
 | |
| 
 | |
| # Native format chars and their ranges.
 | |
| NATIVE = {
 | |
|     '?':0, 'c':0, 'b':0, 'B':0,
 | |
|     'h':0, 'H':0, 'i':0, 'I':0,
 | |
|     'l':0, 'L':0, 'n':0, 'N':0,
 | |
|     'f':0, 'd':0, 'P':0
 | |
| }
 | |
| 
 | |
| # NumPy does not have 'n' or 'N':
 | |
| if numpy_array:
 | |
|     del NATIVE['n']
 | |
|     del NATIVE['N']
 | |
| 
 | |
| if struct:
 | |
|     try:
 | |
|         # Add "qQ" if present in native mode.
 | |
|         struct.pack('Q', 2**64-1)
 | |
|         NATIVE['q'] = 0
 | |
|         NATIVE['Q'] = 0
 | |
|     except struct.error:
 | |
|         pass
 | |
| 
 | |
| # Standard format chars and their ranges.
 | |
| STANDARD = {
 | |
|     '?':(0, 2),            'c':(0, 1<<8),
 | |
|     'b':(-(1<<7), 1<<7),   'B':(0, 1<<8),
 | |
|     'h':(-(1<<15), 1<<15), 'H':(0, 1<<16),
 | |
|     'i':(-(1<<31), 1<<31), 'I':(0, 1<<32),
 | |
|     'l':(-(1<<31), 1<<31), 'L':(0, 1<<32),
 | |
|     'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64),
 | |
|     'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023)
 | |
| }
 | |
| 
 | |
| def native_type_range(fmt):
 | |
|     """Return range of a native type."""
 | |
|     if fmt == 'c':
 | |
|         lh = (0, 256)
 | |
|     elif fmt == '?':
 | |
|         lh = (0, 2)
 | |
|     elif fmt == 'f':
 | |
|         lh = (-(1<<63), 1<<63)
 | |
|     elif fmt == 'd':
 | |
|         lh = (-(1<<1023), 1<<1023)
 | |
|     else:
 | |
|         for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7):
 | |
|             try:
 | |
|                 struct.pack(fmt, (1<<exp)-1)
 | |
|                 break
 | |
|             except struct.error:
 | |
|                 pass
 | |
|         lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp)
 | |
|     return lh
 | |
| 
 | |
| fmtdict = {
 | |
|     '':NATIVE,
 | |
|     '@':NATIVE,
 | |
|     '<':STANDARD,
 | |
|     '>':STANDARD,
 | |
|     '=':STANDARD,
 | |
|     '!':STANDARD
 | |
| }
 | |
| 
 | |
| if struct:
 | |
|     for fmt in fmtdict['@']:
 | |
|         fmtdict['@'][fmt] = native_type_range(fmt)
 | |
| 
 | |
| MEMORYVIEW = NATIVE.copy()
 | |
| ARRAY = NATIVE.copy()
 | |
| for k in NATIVE:
 | |
|     if not k in "bBhHiIlLfd":
 | |
|         del ARRAY[k]
 | |
| 
 | |
| BYTEFMT = NATIVE.copy()
 | |
| for k in NATIVE:
 | |
|     if not k in "Bbc":
 | |
|         del BYTEFMT[k]
 | |
| 
 | |
| fmtdict['m']  = MEMORYVIEW
 | |
| fmtdict['@m'] = MEMORYVIEW
 | |
| fmtdict['a']  = ARRAY
 | |
| fmtdict['b']  = BYTEFMT
 | |
| fmtdict['@b']  = BYTEFMT
 | |
| 
 | |
| # Capabilities of the test objects:
 | |
| MODE = 0
 | |
| MULT = 1
 | |
| cap = {         # format chars                  # multiplier
 | |
|   'ndarray':    (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']),
 | |
|   'array':      (['a'],                         ['']),
 | |
|   'numpy':      ([''],                          ['']),
 | |
|   'memoryview': (['@m', 'm'],                   ['']),
 | |
|   'bytefmt':    (['@b', 'b'],                   ['']),
 | |
| }
 | |
| 
 | |
| def randrange_fmt(mode, char, obj):
 | |
|     """Return random item for a type specified by a mode and a single
 | |
|        format character."""
 | |
|     x = randrange(*fmtdict[mode][char])
 | |
|     if char == 'c':
 | |
|         x = bytes([x])
 | |
|         if obj == 'numpy' and x == b'\x00':
 | |
|             # http://projects.scipy.org/numpy/ticket/1925
 | |
|             x = b'\x01'
 | |
|     if char == '?':
 | |
|         x = bool(x)
 | |
|     if char == 'f' or char == 'd':
 | |
|         x = struct.pack(char, x)
 | |
|         x = struct.unpack(char, x)[0]
 | |
|     return x
 | |
| 
 | |
| def gen_item(fmt, obj):
 | |
|     """Return single random item."""
 | |
|     mode, chars = fmt.split('#')
 | |
|     x = []
 | |
|     for c in chars:
 | |
|         x.append(randrange_fmt(mode, c, obj))
 | |
|     return x[0] if len(x) == 1 else tuple(x)
 | |
| 
 | |
| def gen_items(n, fmt, obj):
 | |
|     """Return a list of random items (or a scalar)."""
 | |
|     if n == 0:
 | |
|         return gen_item(fmt, obj)
 | |
|     lst = [0] * n
 | |
|     for i in range(n):
 | |
|         lst[i] = gen_item(fmt, obj)
 | |
|     return lst
 | |
| 
 | |
| def struct_items(n, obj):
 | |
|     mode = choice(cap[obj][MODE])
 | |
|     xfmt = mode + '#'
 | |
|     fmt = mode.strip('amb')
 | |
|     nmemb = randrange(2, 10) # number of struct members
 | |
|     for _ in range(nmemb):
 | |
|         char = choice(tuple(fmtdict[mode]))
 | |
|         multiplier = choice(cap[obj][MULT])
 | |
|         xfmt += (char * int(multiplier if multiplier else 1))
 | |
|         fmt += (multiplier + char)
 | |
|     items = gen_items(n, xfmt, obj)
 | |
|     item = gen_item(xfmt, obj)
 | |
|     return fmt, items, item
 | |
| 
 | |
| def randitems(n, obj='ndarray', mode=None, char=None):
 | |
|     """Return random format, items, item."""
 | |
|     if mode is None:
 | |
|         mode = choice(cap[obj][MODE])
 | |
|     if char is None:
 | |
|         char = choice(tuple(fmtdict[mode]))
 | |
|     multiplier = choice(cap[obj][MULT])
 | |
|     fmt = mode + '#' + char * int(multiplier if multiplier else 1)
 | |
|     items = gen_items(n, fmt, obj)
 | |
|     item = gen_item(fmt, obj)
 | |
|     fmt = mode.strip('amb') + multiplier + char
 | |
|     return fmt, items, item
 | |
| 
 | |
| def iter_mode(n, obj='ndarray'):
 | |
|     """Iterate through supported mode/char combinations."""
 | |
|     for mode in cap[obj][MODE]:
 | |
|         for char in fmtdict[mode]:
 | |
|             yield randitems(n, obj, mode, char)
 | |
| 
 | |
| def iter_format(nitems, testobj='ndarray'):
 | |
|     """Yield (format, items, item) for all possible modes and format
 | |
|        characters plus one random compound format string."""
 | |
|     for t in iter_mode(nitems, testobj):
 | |
|         yield t
 | |
|     if testobj != 'ndarray':
 | |
|         return
 | |
|     yield struct_items(nitems, testobj)
 | |
| 
 | |
| 
 | |
| def is_byte_format(fmt):
 | |
|     return 'c' in fmt or 'b' in fmt or 'B' in fmt
 | |
| 
 | |
| def is_memoryview_format(fmt):
 | |
|     """format suitable for memoryview"""
 | |
|     x = len(fmt)
 | |
|     return ((x == 1 or (x == 2 and fmt[0] == '@')) and
 | |
|             fmt[x-1] in MEMORYVIEW)
 | |
| 
 | |
| NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)]
 | |
| 
 | |
| 
 | |
| # ======================================================================
 | |
| #       Multi-dimensional tolist(), slicing and slice assignments
 | |
| # ======================================================================
 | |
| 
 | |
| def atomp(lst):
 | |
|     """Tuple items (representing structs) are regarded as atoms."""
 | |
|     return not isinstance(lst, list)
 | |
| 
 | |
| def listp(lst):
 | |
|     return isinstance(lst, list)
 | |
| 
 | |
| def prod(lst):
 | |
|     """Product of list elements."""
 | |
|     if len(lst) == 0:
 | |
|         return 0
 | |
|     x = lst[0]
 | |
|     for v in lst[1:]:
 | |
|         x *= v
 | |
|     return x
 | |
| 
 | |
| def strides_from_shape(ndim, shape, itemsize, layout):
 | |
|     """Calculate strides of a contiguous array. Layout is 'C' or
 | |
|        'F' (Fortran)."""
 | |
|     if ndim == 0:
 | |
|         return ()
 | |
|     if layout == 'C':
 | |
|         strides = list(shape[1:]) + [itemsize]
 | |
|         for i in range(ndim-2, -1, -1):
 | |
|             strides[i] *= strides[i+1]
 | |
|     else:
 | |
|         strides = [itemsize] + list(shape[:-1])
 | |
|         for i in range(1, ndim):
 | |
|             strides[i] *= strides[i-1]
 | |
|     return strides
 | |
| 
 | |
| def _ca(items, s):
 | |
|     """Convert flat item list to the nested list representation of a
 | |
|        multidimensional C array with shape 's'."""
 | |
|     if atomp(items):
 | |
|         return items
 | |
|     if len(s) == 0:
 | |
|         return items[0]
 | |
|     lst = [0] * s[0]
 | |
|     stride = len(items) // s[0] if s[0] else 0
 | |
|     for i in range(s[0]):
 | |
|         start = i*stride
 | |
|         lst[i] = _ca(items[start:start+stride], s[1:])
 | |
|     return lst
 | |
| 
 | |
| def _fa(items, s):
 | |
|     """Convert flat item list to the nested list representation of a
 | |
|        multidimensional Fortran array with shape 's'."""
 | |
|     if atomp(items):
 | |
|         return items
 | |
|     if len(s) == 0:
 | |
|         return items[0]
 | |
|     lst = [0] * s[0]
 | |
|     stride = s[0]
 | |
|     for i in range(s[0]):
 | |
|         lst[i] = _fa(items[i::stride], s[1:])
 | |
|     return lst
 | |
| 
 | |
| def carray(items, shape):
 | |
|     if listp(items) and not 0 in shape and prod(shape) != len(items):
 | |
|         raise ValueError("prod(shape) != len(items)")
 | |
|     return _ca(items, shape)
 | |
| 
 | |
| def farray(items, shape):
 | |
|     if listp(items) and not 0 in shape and prod(shape) != len(items):
 | |
|         raise ValueError("prod(shape) != len(items)")
 | |
|     return _fa(items, shape)
 | |
| 
 | |
| def indices(shape):
 | |
|     """Generate all possible tuples of indices."""
 | |
|     iterables = [range(v) for v in shape]
 | |
|     return product(*iterables)
 | |
| 
 | |
| def getindex(ndim, ind, strides):
 | |
|     """Convert multi-dimensional index to the position in the flat list."""
 | |
|     ret = 0
 | |
|     for i in range(ndim):
 | |
|         ret += strides[i] * ind[i]
 | |
|     return ret
 | |
| 
 | |
| def transpose(src, shape):
 | |
|     """Transpose flat item list that is regarded as a multi-dimensional
 | |
|        matrix defined by shape: dest...[k][j][i] = src[i][j][k]...  """
 | |
|     if not shape:
 | |
|         return src
 | |
|     ndim = len(shape)
 | |
|     sstrides = strides_from_shape(ndim, shape, 1, 'C')
 | |
|     dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C')
 | |
|     dest = [0] * len(src)
 | |
|     for ind in indices(shape):
 | |
|         fr = getindex(ndim, ind, sstrides)
 | |
|         to = getindex(ndim, ind[::-1], dstrides)
 | |
|         dest[to] = src[fr]
 | |
|     return dest
 | |
| 
 | |
| def _flatten(lst):
 | |
|     """flatten list"""
 | |
|     if lst == []:
 | |
|         return lst
 | |
|     if atomp(lst):
 | |
|         return [lst]
 | |
|     return _flatten(lst[0]) + _flatten(lst[1:])
 | |
| 
 | |
| def flatten(lst):
 | |
|     """flatten list or return scalar"""
 | |
|     if atomp(lst): # scalar
 | |
|         return lst
 | |
|     return _flatten(lst)
 | |
| 
 | |
| def slice_shape(lst, slices):
 | |
|     """Get the shape of lst after slicing: slices is a list of slice
 | |
|        objects."""
 | |
|     if atomp(lst):
 | |
|         return []
 | |
|     return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:])
 | |
| 
 | |
| def multislice(lst, slices):
 | |
|     """Multi-dimensional slicing: slices is a list of slice objects."""
 | |
|     if atomp(lst):
 | |
|         return lst
 | |
|     return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]]
 | |
| 
 | |
| def m_assign(llst, rlst, lslices, rslices):
 | |
|     """Multi-dimensional slice assignment: llst and rlst are the operands,
 | |
|        lslices and rslices are lists of slice objects. llst and rlst must
 | |
|        have the same structure.
 | |
| 
 | |
|        For a two-dimensional example, this is not implemented in Python:
 | |
| 
 | |
|          llst[0:3:2, 0:3:2] = rlst[1:3:1, 1:3:1]
 | |
| 
 | |
|        Instead we write:
 | |
| 
 | |
|          lslices = [slice(0,3,2), slice(0,3,2)]
 | |
|          rslices = [slice(1,3,1), slice(1,3,1)]
 | |
|          multislice_assign(llst, rlst, lslices, rslices)
 | |
|     """
 | |
|     if atomp(rlst):
 | |
|         return rlst
 | |
|     rlst = [m_assign(l, r, lslices[1:], rslices[1:])
 | |
|             for l, r in zip(llst[lslices[0]], rlst[rslices[0]])]
 | |
|     llst[lslices[0]] = rlst
 | |
|     return llst
 | |
| 
 | |
| def cmp_structure(llst, rlst, lslices, rslices):
 | |
|     """Compare the structure of llst[lslices] and rlst[rslices]."""
 | |
|     lshape = slice_shape(llst, lslices)
 | |
|     rshape = slice_shape(rlst, rslices)
 | |
|     if (len(lshape) != len(rshape)):
 | |
|         return -1
 | |
|     for i in range(len(lshape)):
 | |
|         if lshape[i] != rshape[i]:
 | |
|             return -1
 | |
|         if lshape[i] == 0:
 | |
|             return 0
 | |
|     return 0
 | |
| 
 | |
| def multislice_assign(llst, rlst, lslices, rslices):
 | |
|     """Return llst after assigning: llst[lslices] = rlst[rslices]"""
 | |
|     if cmp_structure(llst, rlst, lslices, rslices) < 0:
 | |
|         raise ValueError("lvalue and rvalue have different structures")
 | |
|     return m_assign(llst, rlst, lslices, rslices)
 | |
| 
 | |
| 
 | |
| # ======================================================================
 | |
| #                          Random structures
 | |
| # ======================================================================
 | |
| 
 | |
| #
 | |
| # PEP-3118 is very permissive with respect to the contents of a
 | |
| # Py_buffer. In particular:
 | |
| #
 | |
| #   - shape can be zero
 | |
| #   - strides can be any integer, including zero
 | |
| #   - offset can point to any location in the underlying
 | |
| #     memory block, provided that it is a multiple of
 | |
| #     itemsize.
 | |
| #
 | |
| # The functions in this section test and verify random structures
 | |
| # in full generality. A structure is valid iff it fits in the
 | |
| # underlying memory block.
 | |
| #
 | |
| # The structure 't' (short for 'tuple') is fully defined by:
 | |
| #
 | |
| #   t = (memlen, itemsize, ndim, shape, strides, offset)
 | |
| #
 | |
| 
 | |
| def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
 | |
|     """Verify that the parameters represent a valid array within
 | |
|        the bounds of the allocated memory:
 | |
|            char *mem: start of the physical memory block
 | |
|            memlen: length of the physical memory block
 | |
|            offset: (char *)buf - mem
 | |
|     """
 | |
|     if offset % itemsize:
 | |
|         return False
 | |
|     if offset < 0 or offset+itemsize > memlen:
 | |
|         return False
 | |
|     if any(v % itemsize for v in strides):
 | |
|         return False
 | |
| 
 | |
|     if ndim <= 0:
 | |
|         return ndim == 0 and not shape and not strides
 | |
|     if 0 in shape:
 | |
|         return True
 | |
| 
 | |
|     imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 | |
|                if strides[j] <= 0)
 | |
|     imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 | |
|                if strides[j] > 0)
 | |
| 
 | |
|     return 0 <= offset+imin and offset+imax+itemsize <= memlen
 | |
| 
 | |
| def get_item(lst, indices):
 | |
|     for i in indices:
 | |
|         lst = lst[i]
 | |
|     return lst
 | |
| 
 | |
| def memory_index(indices, t):
 | |
|     """Location of an item in the underlying memory."""
 | |
|     memlen, itemsize, ndim, shape, strides, offset = t
 | |
|     p = offset
 | |
|     for i in range(ndim):
 | |
|         p += strides[i]*indices[i]
 | |
|     return p
 | |
| 
 | |
| def is_overlapping(t):
 | |
|     """The structure 't' is overlapping if at least one memory location
 | |
|        is visited twice while iterating through all possible tuples of
 | |
|        indices."""
 | |
|     memlen, itemsize, ndim, shape, strides, offset = t
 | |
|     visited = 1<<memlen
 | |
|     for ind in indices(shape):
 | |
|         i = memory_index(ind, t)
 | |
|         bit = 1<<i
 | |
|         if visited & bit:
 | |
|             return True
 | |
|         visited |= bit
 | |
|     return False
 | |
| 
 | |
| def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()):
 | |
|     """Return random structure:
 | |
|            (memlen, itemsize, ndim, shape, strides, offset)
 | |
|        If 'valid' is true, the returned structure is valid, otherwise invalid.
 | |
|        If 'shape' is given, use that instead of creating a random shape.
 | |
|     """
 | |
|     if not shape:
 | |
|         ndim = randrange(maxdim+1)
 | |
|         if (ndim == 0):
 | |
|             if valid:
 | |
|                 return itemsize, itemsize, ndim, (), (), 0
 | |
|             else:
 | |
|                 nitems = randrange(1, 16+1)
 | |
|                 memlen = nitems * itemsize
 | |
|                 offset = -itemsize if randrange(2) == 0 else memlen
 | |
|                 return memlen, itemsize, ndim, (), (), offset
 | |
| 
 | |
|         minshape = 2
 | |
|         n = randrange(100)
 | |
|         if n >= 95 and valid:
 | |
|             minshape = 0
 | |
|         elif n >= 90:
 | |
|             minshape = 1
 | |
|         shape = [0] * ndim
 | |
| 
 | |
|         for i in range(ndim):
 | |
|             shape[i] = randrange(minshape, maxshape+1)
 | |
|     else:
 | |
|         ndim = len(shape)
 | |
| 
 | |
|     maxstride = 5
 | |
|     n = randrange(100)
 | |
|     zero_stride = True if n >= 95 and n & 1 else False
 | |
| 
 | |
|     strides = [0] * ndim
 | |
|     strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1)
 | |
|     if not zero_stride and strides[ndim-1] == 0:
 | |
|         strides[ndim-1] = itemsize
 | |
| 
 | |
|     for i in range(ndim-2, -1, -1):
 | |
|         maxstride *= shape[i+1] if shape[i+1] else 1
 | |
|         if zero_stride:
 | |
|             strides[i] = itemsize * randrange(-maxstride, maxstride+1)
 | |
|         else:
 | |
|             strides[i] = ((1,-1)[randrange(2)] *
 | |
|                           itemsize * randrange(1, maxstride+1))
 | |
| 
 | |
|     imin = imax = 0
 | |
|     if not 0 in shape:
 | |
|         imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 | |
|                    if strides[j] <= 0)
 | |
|         imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
 | |
|                    if strides[j] > 0)
 | |
| 
 | |
|     nitems = imax - imin
 | |
|     if valid:
 | |
|         offset = -imin * itemsize
 | |
|         memlen = offset + (imax+1) * itemsize
 | |
|     else:
 | |
|         memlen = (-imin + imax) * itemsize
 | |
|         offset = -imin-itemsize if randrange(2) == 0 else memlen
 | |
|     return memlen, itemsize, ndim, shape, strides, offset
 | |
| 
 | |
| def randslice_from_slicelen(slicelen, listlen):
 | |
|     """Create a random slice of len slicelen that fits into listlen."""
 | |
|     maxstart = listlen - slicelen
 | |
|     start = randrange(maxstart+1)
 | |
|     maxstep = (listlen - start) // slicelen if slicelen else 1
 | |
|     step = randrange(1, maxstep+1)
 | |
|     stop = start + slicelen * step
 | |
|     s = slice(start, stop, step)
 | |
|     _, _, _, control = slice_indices(s, listlen)
 | |
|     if control != slicelen:
 | |
|         raise RuntimeError
 | |
|     return s
 | |
| 
 | |
| def randslice_from_shape(ndim, shape):
 | |
|     """Create two sets of slices for an array x with shape 'shape'
 | |
|        such that shapeof(x[lslices]) == shapeof(x[rslices])."""
 | |
|     lslices = [0] * ndim
 | |
|     rslices = [0] * ndim
 | |
|     for n in range(ndim):
 | |
|         l = shape[n]
 | |
|         slicelen = randrange(1, l+1) if l > 0 else 0
 | |
|         lslices[n] = randslice_from_slicelen(slicelen, l)
 | |
|         rslices[n] = randslice_from_slicelen(slicelen, l)
 | |
|     return tuple(lslices), tuple(rslices)
 | |
| 
 | |
| def rand_aligned_slices(maxdim=5, maxshape=16):
 | |
|     """Create (lshape, rshape, tuple(lslices), tuple(rslices)) such that
 | |
|        shapeof(x[lslices]) == shapeof(y[rslices]), where x is an array
 | |
|        with shape 'lshape' and y is an array with shape 'rshape'."""
 | |
|     ndim = randrange(1, maxdim+1)
 | |
|     minshape = 2
 | |
|     n = randrange(100)
 | |
|     if n >= 95:
 | |
|         minshape = 0
 | |
|     elif n >= 90:
 | |
|         minshape = 1
 | |
|     all_random = True if randrange(100) >= 80 else False
 | |
|     lshape = [0]*ndim; rshape = [0]*ndim
 | |
|     lslices = [0]*ndim; rslices = [0]*ndim
 | |
| 
 | |
|     for n in range(ndim):
 | |
|         small = randrange(minshape, maxshape+1)
 | |
|         big = randrange(minshape, maxshape+1)
 | |
|         if big < small:
 | |
|             big, small = small, big
 | |
| 
 | |
|         # Create a slice that fits the smaller value.
 | |
|         if all_random:
 | |
|             start = randrange(-small, small+1)
 | |
|             stop = randrange(-small, small+1)
 | |
|             step = (1,-1)[randrange(2)] * randrange(1, small+2)
 | |
|             s_small = slice(start, stop, step)
 | |
|             _, _, _, slicelen = slice_indices(s_small, small)
 | |
|         else:
 | |
|             slicelen = randrange(1, small+1) if small > 0 else 0
 | |
|             s_small = randslice_from_slicelen(slicelen, small)
 | |
| 
 | |
|         # Create a slice of the same length for the bigger value.
 | |
|         s_big = randslice_from_slicelen(slicelen, big)
 | |
|         if randrange(2) == 0:
 | |
|             rshape[n], lshape[n] = big, small
 | |
|             rslices[n], lslices[n] = s_big, s_small
 | |
|         else:
 | |
|             rshape[n], lshape[n] = small, big
 | |
|             rslices[n], lslices[n] = s_small, s_big
 | |
| 
 | |
|     return lshape, rshape, tuple(lslices), tuple(rslices)
 | |
| 
 | |
| def randitems_from_structure(fmt, t):
 | |
|     """Return a list of random items for structure 't' with format
 | |
|        'fmtchar'."""
 | |
|     memlen, itemsize, _, _, _, _ = t
 | |
|     return gen_items(memlen//itemsize, '#'+fmt, 'numpy')
 | |
| 
 | |
| def ndarray_from_structure(items, fmt, t, flags=0):
 | |
|     """Return ndarray from the tuple returned by rand_structure()"""
 | |
|     memlen, itemsize, ndim, shape, strides, offset = t
 | |
|     return ndarray(items, shape=shape, strides=strides, format=fmt,
 | |
|                    offset=offset, flags=ND_WRITABLE|flags)
 | |
| 
 | |
| def numpy_array_from_structure(items, fmt, t):
 | |
|     """Return numpy_array from the tuple returned by rand_structure()"""
 | |
|     memlen, itemsize, ndim, shape, strides, offset = t
 | |
|     buf = bytearray(memlen)
 | |
|     for j, v in enumerate(items):
 | |
|         struct.pack_into(fmt, buf, j*itemsize, v)
 | |
|     return numpy_array(buffer=buf, shape=shape, strides=strides,
 | |
|                        dtype=fmt, offset=offset)
 | |
| 
 | |
| 
 | |
| # ======================================================================
 | |
| #                          memoryview casts
 | |
| # ======================================================================
 | |
| 
 | |
| def cast_items(exporter, fmt, itemsize, shape=None):
 | |
|     """Interpret the raw memory of 'exporter' as a list of items with
 | |
|        size 'itemsize'. If shape=None, the new structure is assumed to
 | |
|        be 1-D with n * itemsize = bytelen. If shape is given, the usual
 | |
|        constraint for contiguous arrays prod(shape) * itemsize = bytelen
 | |
|        applies. On success, return (items, shape). If the constraints
 | |
|        cannot be met, return (None, None). If a chunk of bytes is interpreted
 | |
|        as NaN as a result of float conversion, return ('nan', None)."""
 | |
|     bytelen = exporter.nbytes
 | |
|     if shape:
 | |
|         if prod(shape) * itemsize != bytelen:
 | |
|             return None, shape
 | |
|     elif shape == []:
 | |
|         if exporter.ndim == 0 or itemsize != bytelen:
 | |
|             return None, shape
 | |
|     else:
 | |
|         n, r = divmod(bytelen, itemsize)
 | |
|         shape = [n]
 | |
|         if r != 0:
 | |
|             return None, shape
 | |
| 
 | |
|     mem = exporter.tobytes()
 | |
|     byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)]
 | |
| 
 | |
|     items = []
 | |
|     for v in byteitems:
 | |
|         item = struct.unpack(fmt, v)[0]
 | |
|         if item != item:
 | |
|             return 'nan', shape
 | |
|         items.append(item)
 | |
| 
 | |
|     return (items, shape) if shape != [] else (items[0], shape)
 | |
| 
 | |
| def gencastshapes():
 | |
|     """Generate shapes to test casting."""
 | |
|     for n in range(32):
 | |
|         yield [n]
 | |
|     ndim = randrange(4, 6)
 | |
|     minshape = 1 if randrange(100) > 80 else 2
 | |
|     yield [randrange(minshape, 5) for _ in range(ndim)]
 | |
|     ndim = randrange(2, 4)
 | |
|     minshape = 1 if randrange(100) > 80 else 2
 | |
|     yield [randrange(minshape, 5) for _ in range(ndim)]
 | |
| 
 | |
| 
 | |
| # ======================================================================
 | |
| #                              Actual tests
 | |
| # ======================================================================
 | |
| 
 | |
| def genslices(n):
 | |
|     """Generate all possible slices for a single dimension."""
 | |
|     return product(range(-n, n+1), range(-n, n+1), range(-n, n+1))
 | |
| 
 | |
| def genslices_ndim(ndim, shape):
 | |
|     """Generate all possible slice tuples for 'shape'."""
 | |
|     iterables = [genslices(shape[n]) for n in range(ndim)]
 | |
|     return product(*iterables)
 | |
| 
 | |
| def rslice(n, allow_empty=False):
 | |
|     """Generate random slice for a single dimension of length n.
 | |
|        If zero=True, the slices may be empty, otherwise they will
 | |
|        be non-empty."""
 | |
|     minlen = 0 if allow_empty or n == 0 else 1
 | |
|     slicelen = randrange(minlen, n+1)
 | |
|     return randslice_from_slicelen(slicelen, n)
 | |
| 
 | |
| def rslices(n, allow_empty=False):
 | |
|     """Generate random slices for a single dimension."""
 | |
|     for _ in range(5):
 | |
|         yield rslice(n, allow_empty)
 | |
| 
 | |
| def rslices_ndim(ndim, shape, iterations=5):
 | |
|     """Generate random slice tuples for 'shape'."""
 | |
|     # non-empty slices
 | |
|     for _ in range(iterations):
 | |
|         yield tuple(rslice(shape[n]) for n in range(ndim))
 | |
|     # possibly empty slices
 | |
|     for _ in range(iterations):
 | |
|         yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim))
 | |
|     # invalid slices
 | |
|     yield tuple(slice(0,1,0) for _ in range(ndim))
 | |
| 
 | |
| def rpermutation(iterable, r=None):
 | |
|     pool = tuple(iterable)
 | |
|     r = len(pool) if r is None else r
 | |
|     yield tuple(sample(pool, r))
 | |
| 
 | |
| def ndarray_print(nd):
 | |
|     """Print ndarray for debugging."""
 | |
|     try:
 | |
|         x = nd.tolist()
 | |
|     except (TypeError, NotImplementedError):
 | |
|         x = nd.tobytes()
 | |
|     if isinstance(nd, ndarray):
 | |
|         offset = nd.offset
 | |
|         flags = nd.flags
 | |
|     else:
 | |
|         offset = 'unknown'
 | |
|         flags = 'unknown'
 | |
|     print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, "
 | |
|           "format='%s', itemsize=%s, flags=%s)" %
 | |
|           (x, nd.shape, nd.strides, nd.suboffsets, offset,
 | |
|            nd.format, nd.itemsize, flags))
 | |
|     sys.stdout.flush()
 | |
| 
 | |
| 
 | |
| ITERATIONS = 100
 | |
| MAXDIM = 5
 | |
| MAXSHAPE = 10
 | |
| 
 | |
| if SHORT_TEST:
 | |
|     ITERATIONS = 10
 | |
|     MAXDIM = 3
 | |
|     MAXSHAPE = 4
 | |
|     genslices = rslices
 | |
|     genslices_ndim = rslices_ndim
 | |
|     permutations = rpermutation
 | |
| 
 | |
| 
 | |
| @unittest.skipUnless(struct, 'struct module required for this test.')
 | |
| @unittest.skipUnless(ndarray, 'ndarray object required for this test')
 | |
| class TestBufferProtocol(unittest.TestCase):
 | |
| 
 | |
|     def setUp(self):
 | |
|         # The suboffsets tests need sizeof(void *).
 | |
|         self.sizeof_void_p = get_sizeof_void_p()
 | |
| 
 | |
|     def verify(self, result, *, obj,
 | |
|                      itemsize, fmt, readonly,
 | |
|                      ndim, shape, strides,
 | |
|                      lst, sliced=False, cast=False):
 | |
|         # Verify buffer contents against expected values.
 | |
|         if shape:
 | |
|             expected_len = prod(shape)*itemsize
 | |
|         else:
 | |
|             if not fmt: # array has been implicitly cast to unsigned bytes
 | |
|                 expected_len = len(lst)
 | |
|             else: # ndim = 0
 | |
|                 expected_len = itemsize
 | |
| 
 | |
|         # Reconstruct suboffsets from strides. Support for slicing
 | |
|         # could be added, but is currently only needed for test_getbuf().
 | |
|         suboffsets = ()
 | |
|         if result.suboffsets:
 | |
|             self.assertGreater(ndim, 0)
 | |
| 
 | |
|             suboffset0 = 0
 | |
|             for n in range(1, ndim):
 | |
|                 if shape[n] == 0:
 | |
|                     break
 | |
|                 if strides[n] <= 0:
 | |
|                     suboffset0 += -strides[n] * (shape[n]-1)
 | |
| 
 | |
|             suboffsets = [suboffset0] + [-1 for v in range(ndim-1)]
 | |
| 
 | |
|             # Not correct if slicing has occurred in the first dimension.
 | |
|             stride0 = self.sizeof_void_p
 | |
|             if strides[0] < 0:
 | |
|                 stride0 = -stride0
 | |
|             strides = [stride0] + list(strides[1:])
 | |
| 
 | |
|         self.assertIs(result.obj, obj)
 | |
|         self.assertEqual(result.nbytes, expected_len)
 | |
|         self.assertEqual(result.itemsize, itemsize)
 | |
|         self.assertEqual(result.format, fmt)
 | |
|         self.assertIs(result.readonly, readonly)
 | |
|         self.assertEqual(result.ndim, ndim)
 | |
|         self.assertEqual(result.shape, tuple(shape))
 | |
|         if not (sliced and suboffsets):
 | |
|             self.assertEqual(result.strides, tuple(strides))
 | |
|         self.assertEqual(result.suboffsets, tuple(suboffsets))
 | |
| 
 | |
|         if isinstance(result, ndarray) or is_memoryview_format(fmt):
 | |
|             rep = result.tolist() if fmt else result.tobytes()
 | |
|             self.assertEqual(rep, lst)
 | |
| 
 | |
|         if not fmt: # array has been cast to unsigned bytes,
 | |
|             return  # the remaining tests won't work.
 | |
| 
 | |
|         # PyBuffer_GetPointer() is the definition how to access an item.
 | |
|         # If PyBuffer_GetPointer(indices) is correct for all possible
 | |
|         # combinations of indices, the buffer is correct.
 | |
|         #
 | |
|         # Also test tobytes() against the flattened 'lst', with all items
 | |
|         # packed to bytes.
 | |
|         if not cast: # casts chop up 'lst' in different ways
 | |
|             b = bytearray()
 | |
|             buf_err = None
 | |
|             for ind in indices(shape):
 | |
|                 try:
 | |
|                     item1 = get_pointer(result, ind)
 | |
|                     item2 = get_item(lst, ind)
 | |
|                     if isinstance(item2, tuple):
 | |
|                         x = struct.pack(fmt, *item2)
 | |
|                     else:
 | |
|                         x = struct.pack(fmt, item2)
 | |
|                     b.extend(x)
 | |
|                 except BufferError:
 | |
|                     buf_err = True # re-exporter does not provide full buffer
 | |
|                     break
 | |
|                 self.assertEqual(item1, item2)
 | |
| 
 | |
|             if not buf_err:
 | |
|                 # test tobytes()
 | |
|                 self.assertEqual(result.tobytes(), b)
 | |
| 
 | |
|                 # test hex()
 | |
|                 m = memoryview(result)
 | |
|                 h = "".join("%02x" % c for c in b)
 | |
|                 self.assertEqual(m.hex(), h)
 | |
| 
 | |
|                 # lst := expected multi-dimensional logical representation
 | |
|                 # flatten(lst) := elements in C-order
 | |
|                 ff = fmt if fmt else 'B'
 | |
|                 flattened = flatten(lst)
 | |
| 
 | |
|                 # Rules for 'A': if the array is already contiguous, return
 | |
|                 # the array unaltered. Otherwise, return a contiguous 'C'
 | |
|                 # representation.
 | |
|                 for order in ['C', 'F', 'A']:
 | |
|                     expected = result
 | |
|                     if order == 'F':
 | |
|                         if not is_contiguous(result, 'A') or \
 | |
|                            is_contiguous(result, 'C'):
 | |
|                             # For constructing the ndarray, convert the
 | |
|                             # flattened logical representation to Fortran order.
 | |
|                             trans = transpose(flattened, shape)
 | |
|                             expected = ndarray(trans, shape=shape, format=ff,
 | |
|                                                flags=ND_FORTRAN)
 | |
|                     else: # 'C', 'A'
 | |
|                         if not is_contiguous(result, 'A') or \
 | |
|                            is_contiguous(result, 'F') and order == 'C':
 | |
|                             # The flattened list is already in C-order.
 | |
|                             expected = ndarray(flattened, shape=shape, format=ff)
 | |
| 
 | |
|                     contig = get_contiguous(result, PyBUF_READ, order)
 | |
|                     self.assertEqual(contig.tobytes(), b)
 | |
|                     self.assertTrue(cmp_contig(contig, expected))
 | |
| 
 | |
|                     if ndim == 0:
 | |
|                         continue
 | |
| 
 | |
|                     nmemb = len(flattened)
 | |
|                     ro = 0 if readonly else ND_WRITABLE
 | |
| 
 | |
|                     ### See comment in test_py_buffer_to_contiguous for an
 | |
|                     ### explanation why these tests are valid.
 | |
| 
 | |
|                     # To 'C'
 | |
|                     contig = py_buffer_to_contiguous(result, 'C', PyBUF_FULL_RO)
 | |
|                     self.assertEqual(len(contig), nmemb * itemsize)
 | |
|                     initlst = [struct.unpack_from(fmt, contig, n*itemsize)
 | |
|                                for n in range(nmemb)]
 | |
|                     if len(initlst[0]) == 1:
 | |
|                         initlst = [v[0] for v in initlst]
 | |
| 
 | |
|                     y = ndarray(initlst, shape=shape, flags=ro, format=fmt)
 | |
|                     self.assertEqual(memoryview(y), memoryview(result))
 | |
| 
 | |
|                     contig_bytes = memoryview(result).tobytes()
 | |
|                     self.assertEqual(contig_bytes, contig)
 | |
| 
 | |
|                     contig_bytes = memoryview(result).tobytes(order=None)
 | |
|                     self.assertEqual(contig_bytes, contig)
 | |
| 
 | |
|                     contig_bytes = memoryview(result).tobytes(order='C')
 | |
|                     self.assertEqual(contig_bytes, contig)
 | |
| 
 | |
|                     # To 'F'
 | |
|                     contig = py_buffer_to_contiguous(result, 'F', PyBUF_FULL_RO)
 | |
|                     self.assertEqual(len(contig), nmemb * itemsize)
 | |
|                     initlst = [struct.unpack_from(fmt, contig, n*itemsize)
 | |
|                                for n in range(nmemb)]
 | |
|                     if len(initlst[0]) == 1:
 | |
|                         initlst = [v[0] for v in initlst]
 | |
| 
 | |
|                     y = ndarray(initlst, shape=shape, flags=ro|ND_FORTRAN,
 | |
|                                 format=fmt)
 | |
|                     self.assertEqual(memoryview(y), memoryview(result))
 | |
| 
 | |
|                     contig_bytes = memoryview(result).tobytes(order='F')
 | |
|                     self.assertEqual(contig_bytes, contig)
 | |
| 
 | |
|                     # To 'A'
 | |
|                     contig = py_buffer_to_contiguous(result, 'A', PyBUF_FULL_RO)
 | |
|                     self.assertEqual(len(contig), nmemb * itemsize)
 | |
|                     initlst = [struct.unpack_from(fmt, contig, n*itemsize)
 | |
|                                for n in range(nmemb)]
 | |
|                     if len(initlst[0]) == 1:
 | |
|                         initlst = [v[0] for v in initlst]
 | |
| 
 | |
|                     f = ND_FORTRAN if is_contiguous(result, 'F') else 0
 | |
|                     y = ndarray(initlst, shape=shape, flags=f|ro, format=fmt)
 | |
|                     self.assertEqual(memoryview(y), memoryview(result))
 | |
| 
 | |
|                     contig_bytes = memoryview(result).tobytes(order='A')
 | |
|                     self.assertEqual(contig_bytes, contig)
 | |
| 
 | |
|         if is_memoryview_format(fmt):
 | |
|             try:
 | |
|                 m = memoryview(result)
 | |
|             except BufferError: # re-exporter does not provide full information
 | |
|                 return
 | |
|             ex = result.obj if isinstance(result, memoryview) else result
 | |
| 
 | |
|             def check_memoryview(m, expected_readonly=readonly):
 | |
|                 self.assertIs(m.obj, ex)
 | |
|                 self.assertEqual(m.nbytes, expected_len)
 | |
|                 self.assertEqual(m.itemsize, itemsize)
 | |
|                 self.assertEqual(m.format, fmt)
 | |
|                 self.assertEqual(m.readonly, expected_readonly)
 | |
|                 self.assertEqual(m.ndim, ndim)
 | |
|                 self.assertEqual(m.shape, tuple(shape))
 | |
|                 if not (sliced and suboffsets):
 | |
|                     self.assertEqual(m.strides, tuple(strides))
 | |
|                 self.assertEqual(m.suboffsets, tuple(suboffsets))
 | |
| 
 | |
|                 n = 1 if ndim == 0 else len(lst)
 | |
|                 self.assertEqual(len(m), n)
 | |
| 
 | |
|                 rep = result.tolist() if fmt else result.tobytes()
 | |
|                 self.assertEqual(rep, lst)
 | |
|                 self.assertEqual(m, result)
 | |
| 
 | |
|             check_memoryview(m)
 | |
|             with m.toreadonly() as mm:
 | |
|                 check_memoryview(mm, expected_readonly=True)
 | |
|             m.tobytes()  # Releasing mm didn't release m
 | |
| 
 | |
|     def verify_getbuf(self, orig_ex, ex, req, sliced=False):
 | |
|         def match(req, flag):
 | |
|             return ((req&flag) == flag)
 | |
| 
 | |
|         if (# writable request to read-only exporter
 | |
|             (ex.readonly and match(req, PyBUF_WRITABLE)) or
 | |
|             # cannot match explicit contiguity request
 | |
|             (match(req, PyBUF_C_CONTIGUOUS) and not ex.c_contiguous) or
 | |
|             (match(req, PyBUF_F_CONTIGUOUS) and not ex.f_contiguous) or
 | |
|             (match(req, PyBUF_ANY_CONTIGUOUS) and not ex.contiguous) or
 | |
|             # buffer needs suboffsets
 | |
|             (not match(req, PyBUF_INDIRECT) and ex.suboffsets) or
 | |
|             # buffer without strides must be C-contiguous
 | |
|             (not match(req, PyBUF_STRIDES) and not ex.c_contiguous) or
 | |
|             # PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT
 | |
|             (not match(req, PyBUF_ND) and match(req, PyBUF_FORMAT))):
 | |
| 
 | |
|             self.assertRaises(BufferError, ndarray, ex, getbuf=req)
 | |
|             return
 | |
| 
 | |
|         if isinstance(ex, ndarray) or is_memoryview_format(ex.format):
 | |
|             lst = ex.tolist()
 | |
|         else:
 | |
|             nd = ndarray(ex, getbuf=PyBUF_FULL_RO)
 | |
|             lst = nd.tolist()
 | |
| 
 | |
|         # The consumer may have requested default values or a NULL format.
 | |
|         ro = False if match(req, PyBUF_WRITABLE) else ex.readonly
 | |
|         fmt = ex.format
 | |
|         itemsize = ex.itemsize
 | |
|         ndim = ex.ndim
 | |
|         if not match(req, PyBUF_FORMAT):
 | |
|             # itemsize refers to the original itemsize before the cast.
 | |
|             # The equality product(shape) * itemsize = len still holds.
 | |
|             # The equality calcsize(format) = itemsize does _not_ hold.
 | |
|             fmt = ''
 | |
|             lst = orig_ex.tobytes() # Issue 12834
 | |
|         if not match(req, PyBUF_ND):
 | |
|             ndim = 1
 | |
|         shape = orig_ex.shape if match(req, PyBUF_ND) else ()
 | |
|         strides = orig_ex.strides if match(req, PyBUF_STRIDES) else ()
 | |
| 
 | |
|         nd = ndarray(ex, getbuf=req)
 | |
|         self.verify(nd, obj=ex,
 | |
|                     itemsize=itemsize, fmt=fmt, readonly=ro,
 | |
|                     ndim=ndim, shape=shape, strides=strides,
 | |
|                     lst=lst, sliced=sliced)
 | |
| 
 | |
|     def test_ndarray_getbuf(self):
 | |
|         requests = (
 | |
|             # distinct flags
 | |
|             PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE,
 | |
|             PyBUF_C_CONTIGUOUS, PyBUF_F_CONTIGUOUS, PyBUF_ANY_CONTIGUOUS,
 | |
|             # compound requests
 | |
|             PyBUF_FULL, PyBUF_FULL_RO,
 | |
|             PyBUF_RECORDS, PyBUF_RECORDS_RO,
 | |
|             PyBUF_STRIDED, PyBUF_STRIDED_RO,
 | |
|             PyBUF_CONTIG, PyBUF_CONTIG_RO,
 | |
|         )
 | |
|         # items and format
 | |
|         items_fmt = (
 | |
|             ([True if x % 2 else False for x in range(12)], '?'),
 | |
|             ([1,2,3,4,5,6,7,8,9,10,11,12], 'b'),
 | |
|             ([1,2,3,4,5,6,7,8,9,10,11,12], 'B'),
 | |
|             ([(2**31-x) if x % 2 else (-2**31+x) for x in range(12)], 'l')
 | |
|         )
 | |
|         # shape, strides, offset
 | |
|         structure = (
 | |
|             ([], [], 0),
 | |
|             ([1,3,1], [], 0),
 | |
|             ([12], [], 0),
 | |
|             ([12], [-1], 11),
 | |
|             ([6], [2], 0),
 | |
|             ([6], [-2], 11),
 | |
|             ([3, 4], [], 0),
 | |
|             ([3, 4], [-4, -1], 11),
 | |
|             ([2, 2], [4, 1], 4),
 | |
|             ([2, 2], [-4, -1], 8)
 | |
|         )
 | |
|         # ndarray creation flags
 | |
|         ndflags = (
 | |
|             0, ND_WRITABLE, ND_FORTRAN, ND_FORTRAN|ND_WRITABLE,
 | |
|             ND_PIL, ND_PIL|ND_WRITABLE
 | |
|         )
 | |
|         # flags that can actually be used as flags
 | |
|         real_flags = (0, PyBUF_WRITABLE, PyBUF_FORMAT,
 | |
|                       PyBUF_WRITABLE|PyBUF_FORMAT)
 | |
| 
 | |
|         for items, fmt in items_fmt:
 | |
|             itemsize = struct.calcsize(fmt)
 | |
|             for shape, strides, offset in structure:
 | |
|                 strides = [v * itemsize for v in strides]
 | |
|                 offset *= itemsize
 | |
|                 for flags in ndflags:
 | |
| 
 | |
|                     if strides and (flags&ND_FORTRAN):
 | |
|                         continue
 | |
|                     if not shape and (flags&ND_PIL):
 | |
|                         continue
 | |
| 
 | |
|                     _items = items if shape else items[0]
 | |
|                     ex1 = ndarray(_items, format=fmt, flags=flags,
 | |
|                                   shape=shape, strides=strides, offset=offset)
 | |
|                     ex2 = ex1[::-2] if shape else None
 | |
| 
 | |
|                     m1 = memoryview(ex1)
 | |
|                     if ex2:
 | |
|                         m2 = memoryview(ex2)
 | |
|                     if ex1.ndim == 0 or (ex1.ndim == 1 and shape and strides):
 | |
|                         self.assertEqual(m1, ex1)
 | |
|                     if ex2 and ex2.ndim == 1 and shape and strides:
 | |
|                         self.assertEqual(m2, ex2)
 | |
| 
 | |
|                     for req in requests:
 | |
|                         for bits in real_flags:
 | |
|                             self.verify_getbuf(ex1, ex1, req|bits)
 | |
|                             self.verify_getbuf(ex1, m1, req|bits)
 | |
|                             if ex2:
 | |
|                                 self.verify_getbuf(ex2, ex2, req|bits,
 | |
|                                                    sliced=True)
 | |
|                                 self.verify_getbuf(ex2, m2, req|bits,
 | |
|                                                    sliced=True)
 | |
| 
 | |
|         items = [1,2,3,4,5,6,7,8,9,10,11,12]
 | |
| 
 | |
|         # ND_GETBUF_FAIL
 | |
|         ex = ndarray(items, shape=[12], flags=ND_GETBUF_FAIL)
 | |
|         self.assertRaises(BufferError, ndarray, ex)
 | |
| 
 | |
|         # Request complex structure from a simple exporter. In this
 | |
|         # particular case the test object is not PEP-3118 compliant.
 | |
|         base = ndarray([9], [1])
 | |
|         ex = ndarray(base, getbuf=PyBUF_SIMPLE)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_WRITABLE)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ND)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_STRIDES)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_C_CONTIGUOUS)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_F_CONTIGUOUS)
 | |
|         self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ANY_CONTIGUOUS)
 | |
|         nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
| 
 | |
|         # Issue #22445: New precise contiguity definition.
 | |
|         for shape in [1,12,1], [7,0,7]:
 | |
|             for order in 0, ND_FORTRAN:
 | |
|                 ex = ndarray(items, shape=shape, flags=order|ND_WRITABLE)
 | |
|                 self.assertTrue(is_contiguous(ex, 'F'))
 | |
|                 self.assertTrue(is_contiguous(ex, 'C'))
 | |
| 
 | |
|                 for flags in requests:
 | |
|                     nd = ndarray(ex, getbuf=flags)
 | |
|                     self.assertTrue(is_contiguous(nd, 'F'))
 | |
|                     self.assertTrue(is_contiguous(nd, 'C'))
 | |
| 
 | |
|     def test_ndarray_exceptions(self):
 | |
|         nd = ndarray([9], [1])
 | |
|         ndm = ndarray([9], [1], flags=ND_VAREXPORT)
 | |
| 
 | |
|         # Initialization of a new ndarray or mutation of an existing array.
 | |
|         for c in (ndarray, nd.push, ndm.push):
 | |
|             # Invalid types.
 | |
|             self.assertRaises(TypeError, c, {1,2,3})
 | |
|             self.assertRaises(TypeError, c, [1,2,'3'])
 | |
|             self.assertRaises(TypeError, c, [1,2,(3,4)])
 | |
|             self.assertRaises(TypeError, c, [1,2,3], shape={3})
 | |
|             self.assertRaises(TypeError, c, [1,2,3], shape=[3], strides={1})
 | |
|             self.assertRaises(TypeError, c, [1,2,3], shape=[3], offset=[])
 | |
|             self.assertRaises(TypeError, c, [1], shape=[1], format={})
 | |
|             self.assertRaises(TypeError, c, [1], shape=[1], flags={})
 | |
|             self.assertRaises(TypeError, c, [1], shape=[1], getbuf={})
 | |
| 
 | |
|             # ND_FORTRAN flag is only valid without strides.
 | |
|             self.assertRaises(TypeError, c, [1], shape=[1], strides=[1],
 | |
|                               flags=ND_FORTRAN)
 | |
| 
 | |
|             # ND_PIL flag is only valid with ndim > 0.
 | |
|             self.assertRaises(TypeError, c, [1], shape=[], flags=ND_PIL)
 | |
| 
 | |
|             # Invalid items.
 | |
|             self.assertRaises(ValueError, c, [], shape=[1])
 | |
|             self.assertRaises(ValueError, c, ['XXX'], shape=[1], format="L")
 | |
|             # Invalid combination of items and format.
 | |
|             self.assertRaises(struct.error, c, [1000], shape=[1], format="B")
 | |
|             self.assertRaises(ValueError, c, [1,(2,3)], shape=[2], format="B")
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="QL")
 | |
| 
 | |
|             # Invalid ndim.
 | |
|             n = ND_MAX_NDIM+1
 | |
|             self.assertRaises(ValueError, c, [1]*n, shape=[1]*n)
 | |
| 
 | |
|             # Invalid shape.
 | |
|             self.assertRaises(ValueError, c, [1], shape=[-1])
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=['3'])
 | |
|             self.assertRaises(OverflowError, c, [1], shape=[2**128])
 | |
|             # prod(shape) * itemsize != len(items)
 | |
|             self.assertRaises(ValueError, c, [1,2,3,4,5], shape=[2,2], offset=3)
 | |
| 
 | |
|             # Invalid strides.
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=[3], strides=['1'])
 | |
|             self.assertRaises(OverflowError, c, [1], shape=[1],
 | |
|                               strides=[2**128])
 | |
| 
 | |
|             # Invalid combination of strides and shape.
 | |
|             self.assertRaises(ValueError, c, [1,2], shape=[2,1], strides=[1])
 | |
|             # Invalid combination of strides and format.
 | |
|             self.assertRaises(ValueError, c, [1,2,3,4], shape=[2], strides=[3],
 | |
|                               format="L")
 | |
| 
 | |
|             # Invalid offset.
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=[3], offset=4)
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=[1], offset=3,
 | |
|                               format="L")
 | |
| 
 | |
|             # Invalid format.
 | |
|             self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="")
 | |
|             self.assertRaises(struct.error, c, [(1,2,3)], shape=[1],
 | |
|                               format="@#$")
 | |
| 
 | |
|             # Striding out of the memory bounds.
 | |
|             items = [1,2,3,4,5,6,7,8,9,10]
 | |
|             self.assertRaises(ValueError, c, items, shape=[2,3],
 | |
|                               strides=[-3, -2], offset=5)
 | |
| 
 | |
|             # Constructing consumer: format argument invalid.
 | |
|             self.assertRaises(TypeError, c, bytearray(), format="Q")
 | |
| 
 | |
|             # Constructing original base object: getbuf argument invalid.
 | |
|             self.assertRaises(TypeError, c, [1], shape=[1], getbuf=PyBUF_FULL)
 | |
| 
 | |
|             # Shape argument is mandatory for original base objects.
 | |
|             self.assertRaises(TypeError, c, [1])
 | |
| 
 | |
| 
 | |
|         # PyBUF_WRITABLE request to read-only provider.
 | |
|         self.assertRaises(BufferError, ndarray, b'123', getbuf=PyBUF_WRITABLE)
 | |
| 
 | |
|         # ND_VAREXPORT can only be specified during construction.
 | |
|         nd = ndarray([9], [1], flags=ND_VAREXPORT)
 | |
|         self.assertRaises(ValueError, nd.push, [1], [1], flags=ND_VAREXPORT)
 | |
| 
 | |
|         # Invalid operation for consumers: push/pop
 | |
|         nd = ndarray(b'123')
 | |
|         self.assertRaises(BufferError, nd.push, [1], [1])
 | |
|         self.assertRaises(BufferError, nd.pop)
 | |
| 
 | |
|         # ND_VAREXPORT not set: push/pop fail with exported buffers
 | |
|         nd = ndarray([9], [1])
 | |
|         nd.push([1], [1])
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(BufferError, nd.push, [1], [1])
 | |
|         self.assertRaises(BufferError, nd.pop)
 | |
|         m.release()
 | |
|         nd.pop()
 | |
| 
 | |
|         # Single remaining buffer: pop fails
 | |
|         self.assertRaises(BufferError, nd.pop)
 | |
|         del nd
 | |
| 
 | |
|         # get_pointer()
 | |
|         self.assertRaises(TypeError, get_pointer, {}, [1,2,3])
 | |
|         self.assertRaises(TypeError, get_pointer, b'123', {})
 | |
| 
 | |
|         nd = ndarray(list(range(100)), shape=[1]*100)
 | |
|         self.assertRaises(ValueError, get_pointer, nd, [5])
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[3,4])
 | |
|         self.assertRaises(ValueError, get_pointer, nd, [2,3,4])
 | |
|         self.assertRaises(ValueError, get_pointer, nd, [3,3])
 | |
|         self.assertRaises(ValueError, get_pointer, nd, [-3,3])
 | |
|         self.assertRaises(OverflowError, get_pointer, nd, [1<<64,3])
 | |
| 
 | |
|         # tolist() needs format
 | |
|         ex = ndarray([1,2,3], shape=[3], format='L')
 | |
|         nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
|         self.assertRaises(ValueError, nd.tolist)
 | |
| 
 | |
|         # memoryview_from_buffer()
 | |
|         ex1 = ndarray([1,2,3], shape=[3], format='L')
 | |
|         ex2 = ndarray(ex1)
 | |
|         nd = ndarray(ex2)
 | |
|         self.assertRaises(TypeError, nd.memoryview_from_buffer)
 | |
| 
 | |
|         nd = ndarray([(1,)*200], shape=[1], format='L'*200)
 | |
|         self.assertRaises(TypeError, nd.memoryview_from_buffer)
 | |
| 
 | |
|         n = ND_MAX_NDIM
 | |
|         nd = ndarray(list(range(n)), shape=[1]*n)
 | |
|         self.assertRaises(ValueError, nd.memoryview_from_buffer)
 | |
| 
 | |
|         # get_contiguous()
 | |
|         nd = ndarray([1], shape=[1])
 | |
|         self.assertRaises(TypeError, get_contiguous, 1, 2, 3, 4, 5)
 | |
|         self.assertRaises(TypeError, get_contiguous, nd, "xyz", 'C')
 | |
|         self.assertRaises(OverflowError, get_contiguous, nd, 2**64, 'C')
 | |
|         self.assertRaises(TypeError, get_contiguous, nd, PyBUF_READ, 961)
 | |
|         self.assertRaises(UnicodeEncodeError, get_contiguous, nd, PyBUF_READ,
 | |
|                           '\u2007')
 | |
|         self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'Z')
 | |
|         self.assertRaises(ValueError, get_contiguous, nd, 255, 'A')
 | |
| 
 | |
|         # cmp_contig()
 | |
|         nd = ndarray([1], shape=[1])
 | |
|         self.assertRaises(TypeError, cmp_contig, 1, 2, 3, 4, 5)
 | |
|         self.assertRaises(TypeError, cmp_contig, {}, nd)
 | |
|         self.assertRaises(TypeError, cmp_contig, nd, {})
 | |
| 
 | |
|         # is_contiguous()
 | |
|         nd = ndarray([1], shape=[1])
 | |
|         self.assertRaises(TypeError, is_contiguous, 1, 2, 3, 4, 5)
 | |
|         self.assertRaises(TypeError, is_contiguous, {}, 'A')
 | |
|         self.assertRaises(TypeError, is_contiguous, nd, 201)
 | |
| 
 | |
|     def test_ndarray_linked_list(self):
 | |
|         for perm in permutations(range(5)):
 | |
|             m = [0]*5
 | |
|             nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
 | |
|             m[0] = memoryview(nd)
 | |
| 
 | |
|             for i in range(1, 5):
 | |
|                 nd.push([1,2,3], shape=[3])
 | |
|                 m[i] = memoryview(nd)
 | |
| 
 | |
|             for i in range(5):
 | |
|                 m[perm[i]].release()
 | |
| 
 | |
|             self.assertRaises(BufferError, nd.pop)
 | |
|             del nd
 | |
| 
 | |
|     def test_ndarray_format_scalar(self):
 | |
|         # ndim = 0: scalar
 | |
|         for fmt, scalar, _ in iter_format(0):
 | |
|             itemsize = struct.calcsize(fmt)
 | |
|             nd = ndarray(scalar, shape=(), format=fmt)
 | |
|             self.verify(nd, obj=None,
 | |
|                         itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                         ndim=0, shape=(), strides=(),
 | |
|                         lst=scalar)
 | |
| 
 | |
|     def test_ndarray_format_shape(self):
 | |
|         # ndim = 1, shape = [n]
 | |
|         nitems =  randrange(1, 10)
 | |
|         for fmt, items, _ in iter_format(nitems):
 | |
|             itemsize = struct.calcsize(fmt)
 | |
|             for flags in (0, ND_PIL):
 | |
|                 nd = ndarray(items, shape=[nitems], format=fmt, flags=flags)
 | |
|                 self.verify(nd, obj=None,
 | |
|                             itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                             ndim=1, shape=(nitems,), strides=(itemsize,),
 | |
|                             lst=items)
 | |
| 
 | |
|     def test_ndarray_format_strides(self):
 | |
|         # ndim = 1, strides
 | |
|         nitems = randrange(1, 30)
 | |
|         for fmt, items, _ in iter_format(nitems):
 | |
|             itemsize = struct.calcsize(fmt)
 | |
|             for step in range(-5, 5):
 | |
|                 if step == 0:
 | |
|                     continue
 | |
| 
 | |
|                 shape = [len(items[::step])]
 | |
|                 strides = [step*itemsize]
 | |
|                 offset = itemsize*(nitems-1) if step < 0 else 0
 | |
| 
 | |
|                 for flags in (0, ND_PIL):
 | |
|                     nd = ndarray(items, shape=shape, strides=strides,
 | |
|                                  format=fmt, offset=offset, flags=flags)
 | |
|                     self.verify(nd, obj=None,
 | |
|                                 itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                                 ndim=1, shape=shape, strides=strides,
 | |
|                                 lst=items[::step])
 | |
| 
 | |
|     def test_ndarray_fortran(self):
 | |
|         items = [1,2,3,4,5,6,7,8,9,10,11,12]
 | |
|         ex = ndarray(items, shape=(3, 4), strides=(1, 3))
 | |
|         nd = ndarray(ex, getbuf=PyBUF_F_CONTIGUOUS|PyBUF_FORMAT)
 | |
|         self.assertEqual(nd.tolist(), farray(items, (3, 4)))
 | |
| 
 | |
|     def test_ndarray_multidim(self):
 | |
|         for ndim in range(5):
 | |
|             shape_t = [randrange(2, 10) for _ in range(ndim)]
 | |
|             nitems = prod(shape_t)
 | |
|             for shape in permutations(shape_t):
 | |
| 
 | |
|                 fmt, items, _ = randitems(nitems)
 | |
|                 itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|                 for flags in (0, ND_PIL):
 | |
|                     if ndim == 0 and flags == ND_PIL:
 | |
|                         continue
 | |
| 
 | |
|                     # C array
 | |
|                     nd = ndarray(items, shape=shape, format=fmt, flags=flags)
 | |
| 
 | |
|                     strides = strides_from_shape(ndim, shape, itemsize, 'C')
 | |
|                     lst = carray(items, shape)
 | |
|                     self.verify(nd, obj=None,
 | |
|                                 itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                                 ndim=ndim, shape=shape, strides=strides,
 | |
|                                 lst=lst)
 | |
| 
 | |
|                     if is_memoryview_format(fmt):
 | |
|                         # memoryview: reconstruct strides
 | |
|                         ex = ndarray(items, shape=shape, format=fmt)
 | |
|                         nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
 | |
|                         self.assertTrue(nd.strides == ())
 | |
|                         mv = nd.memoryview_from_buffer()
 | |
|                         self.verify(mv, obj=None,
 | |
|                                     itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                                     ndim=ndim, shape=shape, strides=strides,
 | |
|                                     lst=lst)
 | |
| 
 | |
|                     # Fortran array
 | |
|                     nd = ndarray(items, shape=shape, format=fmt,
 | |
|                                  flags=flags|ND_FORTRAN)
 | |
| 
 | |
|                     strides = strides_from_shape(ndim, shape, itemsize, 'F')
 | |
|                     lst = farray(items, shape)
 | |
|                     self.verify(nd, obj=None,
 | |
|                                 itemsize=itemsize, fmt=fmt, readonly=True,
 | |
|                                 ndim=ndim, shape=shape, strides=strides,
 | |
|                                 lst=lst)
 | |
| 
 | |
|     def test_ndarray_index_invalid(self):
 | |
|         # not writable
 | |
|         nd = ndarray([1], shape=[1])
 | |
|         self.assertRaises(TypeError, nd.__setitem__, 1, 8)
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
|         self.assertRaises(TypeError, mv.__setitem__, 1, 8)
 | |
| 
 | |
|         # cannot be deleted
 | |
|         nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
 | |
|         self.assertRaises(TypeError, nd.__delitem__, 1)
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
|         self.assertRaises(TypeError, mv.__delitem__, 1)
 | |
| 
 | |
|         # overflow
 | |
|         nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
 | |
|         self.assertRaises(OverflowError, nd.__getitem__, 1<<64)
 | |
|         self.assertRaises(OverflowError, nd.__setitem__, 1<<64, 8)
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
|         self.assertRaises(IndexError, mv.__getitem__, 1<<64)
 | |
|         self.assertRaises(IndexError, mv.__setitem__, 1<<64, 8)
 | |
| 
 | |
|         # format
 | |
|         items = [1,2,3,4,5,6,7,8]
 | |
|         nd = ndarray(items, shape=[len(items)], format="B", flags=ND_WRITABLE)
 | |
|         self.assertRaises(struct.error, nd.__setitem__, 2, 300)
 | |
|         self.assertRaises(ValueError, nd.__setitem__, 1, (100, 200))
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
|         self.assertRaises(ValueError, mv.__setitem__, 2, 300)
 | |
|         self.assertRaises(TypeError, mv.__setitem__, 1, (100, 200))
 | |
| 
 | |
|         items = [(1,2), (3,4), (5,6)]
 | |
|         nd = ndarray(items, shape=[len(items)], format="LQ", flags=ND_WRITABLE)
 | |
|         self.assertRaises(ValueError, nd.__setitem__, 2, 300)
 | |
|         self.assertRaises(struct.error, nd.__setitem__, 1, (b'\x001', 200))
 | |
| 
 | |
|     def test_ndarray_index_scalar(self):
 | |
|         # scalar
 | |
|         nd = ndarray(1, shape=(), flags=ND_WRITABLE)
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
| 
 | |
|         x = nd[()];  self.assertEqual(x, 1)
 | |
|         x = nd[...]; self.assertEqual(x.tolist(), nd.tolist())
 | |
| 
 | |
|         x = mv[()];  self.assertEqual(x, 1)
 | |
|         x = mv[...]; self.assertEqual(x.tolist(), nd.tolist())
 | |
| 
 | |
|         self.assertRaises(TypeError, nd.__getitem__, 0)
 | |
|         self.assertRaises(TypeError, mv.__getitem__, 0)
 | |
|         self.assertRaises(TypeError, nd.__setitem__, 0, 8)
 | |
|         self.assertRaises(TypeError, mv.__setitem__, 0, 8)
 | |
| 
 | |
|         self.assertEqual(nd.tolist(), 1)
 | |
|         self.assertEqual(mv.tolist(), 1)
 | |
| 
 | |
|         nd[()] = 9; self.assertEqual(nd.tolist(), 9)
 | |
|         mv[()] = 9; self.assertEqual(mv.tolist(), 9)
 | |
| 
 | |
|         nd[...] = 5; self.assertEqual(nd.tolist(), 5)
 | |
|         mv[...] = 5; self.assertEqual(mv.tolist(), 5)
 | |
| 
 | |
|     def test_ndarray_index_null_strides(self):
 | |
|         ex = ndarray(list(range(2*4)), shape=[2, 4], flags=ND_WRITABLE)
 | |
|         nd = ndarray(ex, getbuf=PyBUF_CONTIG)
 | |
| 
 | |
|         # Sub-views are only possible for full exporters.
 | |
|         self.assertRaises(BufferError, nd.__getitem__, 1)
 | |
|         # Same for slices.
 | |
|         self.assertRaises(BufferError, nd.__getitem__, slice(3,5,1))
 | |
| 
 | |
|     def test_ndarray_index_getitem_single(self):
 | |
|         # getitem
 | |
|         for fmt, items, _ in iter_format(5):
 | |
|             nd = ndarray(items, shape=[5], format=fmt)
 | |
|             for i in range(-5, 5):
 | |
|                 self.assertEqual(nd[i], items[i])
 | |
| 
 | |
|             self.assertRaises(IndexError, nd.__getitem__, -6)
 | |
|             self.assertRaises(IndexError, nd.__getitem__, 5)
 | |
| 
 | |
|             if is_memoryview_format(fmt):
 | |
|                 mv = memoryview(nd)
 | |
|                 self.assertEqual(mv, nd)
 | |
|                 for i in range(-5, 5):
 | |
|                     self.assertEqual(mv[i], items[i])
 | |
| 
 | |
|                 self.assertRaises(IndexError, mv.__getitem__, -6)
 | |
|                 self.assertRaises(IndexError, mv.__getitem__, 5)
 | |
| 
 | |
|         # getitem with null strides
 | |
|         for fmt, items, _ in iter_format(5):
 | |
|             ex = ndarray(items, shape=[5], flags=ND_WRITABLE, format=fmt)
 | |
|             nd = ndarray(ex, getbuf=PyBUF_CONTIG|PyBUF_FORMAT)
 | |
| 
 | |
|             for i in range(-5, 5):
 | |
|                 self.assertEqual(nd[i], items[i])
 | |
| 
 | |
|             if is_memoryview_format(fmt):
 | |
|                 mv = nd.memoryview_from_buffer()
 | |
|                 self.assertIs(mv.__eq__(nd), NotImplemented)
 | |
|                 for i in range(-5, 5):
 | |
|                     self.assertEqual(mv[i], items[i])
 | |
| 
 | |
|         # getitem with null format
 | |
|         items = [1,2,3,4,5]
 | |
|         ex = ndarray(items, shape=[5])
 | |
|         nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO)
 | |
|         for i in range(-5, 5):
 | |
|             self.assertEqual(nd[i], items[i])
 | |
| 
 | |
|         # getitem with null shape/strides/format
 | |
|         items = [1,2,3,4,5]
 | |
|         ex = ndarray(items, shape=[5])
 | |
|         nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
| 
 | |
|         for i in range(-5, 5):
 | |
|             self.assertEqual(nd[i], items[i])
 | |
| 
 | |
|     def test_ndarray_index_setitem_single(self):
 | |
|         # assign single value
 | |
|         for fmt, items, single_item in iter_format(5):
 | |
|             nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
 | |
|             for i in range(5):
 | |
|                 items[i] = single_item
 | |
|                 nd[i] = single_item
 | |
|             self.assertEqual(nd.tolist(), items)
 | |
| 
 | |
|             self.assertRaises(IndexError, nd.__setitem__, -6, single_item)
 | |
|             self.assertRaises(IndexError, nd.__setitem__, 5, single_item)
 | |
| 
 | |
|             if not is_memoryview_format(fmt):
 | |
|                 continue
 | |
| 
 | |
|             nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
 | |
|             mv = memoryview(nd)
 | |
|             self.assertEqual(mv, nd)
 | |
|             for i in range(5):
 | |
|                 items[i] = single_item
 | |
|                 mv[i] = single_item
 | |
|             self.assertEqual(mv.tolist(), items)
 | |
| 
 | |
|             self.assertRaises(IndexError, mv.__setitem__, -6, single_item)
 | |
|             self.assertRaises(IndexError, mv.__setitem__, 5, single_item)
 | |
| 
 | |
| 
 | |
|         # assign single value: lobject = robject
 | |
|         for fmt, items, single_item in iter_format(5):
 | |
|             nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
 | |
|             for i in range(-5, 4):
 | |
|                 items[i] = items[i+1]
 | |
|                 nd[i] = nd[i+1]
 | |
|             self.assertEqual(nd.tolist(), items)
 | |
| 
 | |
|             if not is_memoryview_format(fmt):
 | |
|                 continue
 | |
| 
 | |
|             nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
 | |
|             mv = memoryview(nd)
 | |
|             self.assertEqual(mv, nd)
 | |
|             for i in range(-5, 4):
 | |
|                 items[i] = items[i+1]
 | |
|                 mv[i] = mv[i+1]
 | |
|             self.assertEqual(mv.tolist(), items)
 | |
| 
 | |
|     def test_ndarray_index_getitem_multidim(self):
 | |
|         shape_t = (2, 3, 5)
 | |
|         nitems = prod(shape_t)
 | |
|         for shape in permutations(shape_t):
 | |
| 
 | |
|             fmt, items, _ = randitems(nitems)
 | |
| 
 | |
|             for flags in (0, ND_PIL):
 | |
|                 # C array
 | |
|                 nd = ndarray(items, shape=shape, format=fmt, flags=flags)
 | |
|                 lst = carray(items, shape)
 | |
| 
 | |
|                 for i in range(-shape[0], shape[0]):
 | |
|                     self.assertEqual(lst[i], nd[i].tolist())
 | |
|                     for j in range(-shape[1], shape[1]):
 | |
|                         self.assertEqual(lst[i][j], nd[i][j].tolist())
 | |
|                         for k in range(-shape[2], shape[2]):
 | |
|                             self.assertEqual(lst[i][j][k], nd[i][j][k])
 | |
| 
 | |
|                 # Fortran array
 | |
|                 nd = ndarray(items, shape=shape, format=fmt,
 | |
|                              flags=flags|ND_FORTRAN)
 | |
|                 lst = farray(items, shape)
 | |
| 
 | |
|                 for i in range(-shape[0], shape[0]):
 | |
|                     self.assertEqual(lst[i], nd[i].tolist())
 | |
|                     for j in range(-shape[1], shape[1]):
 | |
|                         self.assertEqual(lst[i][j], nd[i][j].tolist())
 | |
|                         for k in range(shape[2], shape[2]):
 | |
|                             self.assertEqual(lst[i][j][k], nd[i][j][k])
 | |
| 
 | |
|     def test_ndarray_sequence(self):
 | |
|         nd = ndarray(1, shape=())
 | |
|         self.assertRaises(TypeError, eval, "1 in nd", locals())
 | |
|         mv = memoryview(nd)
 | |
|         self.assertEqual(mv, nd)
 | |
|         self.assertRaises(TypeError, eval, "1 in mv", locals())
 | |
| 
 | |
|         for fmt, items, _ in iter_format(5):
 | |
|             nd = ndarray(items, shape=[5], format=fmt)
 | |
|             for i, v in enumerate(nd):
 | |
|                 self.assertEqual(v, items[i])
 | |
|                 self.assertTrue(v in nd)
 | |
| 
 | |
|             if is_memoryview_format(fmt):
 | |
|                 mv = memoryview(nd)
 | |
|                 for i, v in enumerate(mv):
 | |
|                     self.assertEqual(v, items[i])
 | |
|                     self.assertTrue(v in mv)
 | |
| 
 | |
|     def test_ndarray_slice_invalid(self):
 | |
|         items = [1,2,3,4,5,6,7,8]
 | |
| 
 | |
|         # rvalue is not an exporter
 | |
|         xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
 | |
|         ml = memoryview(xl)
 | |
|         self.assertRaises(TypeError, xl.__setitem__, slice(0,8,1), items)
 | |
|         self.assertRaises(TypeError, ml.__setitem__, slice(0,8,1), items)
 | |
| 
 | |
|         # rvalue is not a full exporter
 | |
|         xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
 | |
|         ex = ndarray(items, shape=[8], flags=ND_WRITABLE)
 | |
|         xr = ndarray(ex, getbuf=PyBUF_ND)
 | |
|         self.assertRaises(BufferError, xl.__setitem__, slice(0,8,1), xr)
 | |
| 
 | |
|         # zero step
 | |
|         nd = ndarray(items, shape=[8], format="L", flags=ND_WRITABLE)
 | |
|         mv = memoryview(nd)
 | |
|         self.assertRaises(ValueError, nd.__getitem__, slice(0,1,0))
 | |
|         self.assertRaises(ValueError, mv.__getitem__, slice(0,1,0))
 | |
| 
 | |
|         nd = ndarray(items, shape=[2,4], format="L", flags=ND_WRITABLE)
 | |
|         mv = memoryview(nd)
 | |
| 
 | |
|         self.assertRaises(ValueError, nd.__getitem__,
 | |
|                           (slice(0,1,1), slice(0,1,0)))
 | |
|         self.assertRaises(ValueError, nd.__getitem__,
 | |
|                           (slice(0,1,0), slice(0,1,1)))
 | |
|         self.assertRaises(TypeError, nd.__getitem__, "@%$")
 | |
|         self.assertRaises(TypeError, nd.__getitem__, ("@%$", slice(0,1,1)))
 | |
|         self.assertRaises(TypeError, nd.__getitem__, (slice(0,1,1), {}))
 | |
| 
 | |
|         # memoryview: not implemented
 | |
|         self.assertRaises(NotImplementedError, mv.__getitem__,
 | |
|                           (slice(0,1,1), slice(0,1,0)))
 | |
|         self.assertRaises(TypeError, mv.__getitem__, "@%$")
 | |
| 
 | |
|         # differing format
 | |
|         xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
 | |
|         xr = ndarray(items, shape=[8], format="b")
 | |
|         ml = memoryview(xl)
 | |
|         mr = memoryview(xr)
 | |
|         self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
 | |
|         self.assertEqual(xl.tolist(), items)
 | |
|         self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
 | |
|         self.assertEqual(ml.tolist(), items)
 | |
| 
 | |
|         # differing itemsize
 | |
|         xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
 | |
|         yr = ndarray(items, shape=[8], format="L")
 | |
|         ml = memoryview(xl)
 | |
|         mr = memoryview(xr)
 | |
|         self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
 | |
|         self.assertEqual(xl.tolist(), items)
 | |
|         self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
 | |
|         self.assertEqual(ml.tolist(), items)
 | |
| 
 | |
|         # differing ndim
 | |
|         xl = ndarray(items, shape=[2, 4], format="b", flags=ND_WRITABLE)
 | |
|         xr = ndarray(items, shape=[8], format="b")
 | |
|         ml = memoryview(xl)
 | |
|         mr = memoryview(xr)
 | |
|         self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
 | |
|         self.assertEqual(xl.tolist(), [[1,2,3,4], [5,6,7,8]])
 | |
|         self.assertRaises(NotImplementedError, ml.__setitem__, slice(0,1,1),
 | |
|                           mr[7:8])
 | |
| 
 | |
|         # differing shape
 | |
|         xl = ndarray(items, shape=[8], format="b", flags=ND_WRITABLE)
 | |
|         xr = ndarray(items, shape=[8], format="b")
 | |
|         ml = memoryview(xl)
 | |
|         mr = memoryview(xr)
 | |
|         self.assertRaises(ValueError, xl.__setitem__, slice(0,2,1), xr[7:8])
 | |
|         self.assertEqual(xl.tolist(), items)
 | |
|         self.assertRaises(ValueError, ml.__setitem__, slice(0,2,1), mr[7:8])
 | |
|         self.assertEqual(ml.tolist(), items)
 | |
| 
 | |
|         # _testbuffer.c module functions
 | |
|         self.assertRaises(TypeError, slice_indices, slice(0,1,2), {})
 | |
|         self.assertRaises(TypeError, slice_indices, "###########", 1)
 | |
|         self.assertRaises(ValueError, slice_indices, slice(0,1,0), 4)
 | |
| 
 | |
|         x = ndarray(items, shape=[8], format="b", flags=ND_PIL)
 | |
|         self.assertRaises(TypeError, x.add_suboffsets)
 | |
| 
 | |
|         ex = ndarray(items, shape=[8], format="B")
 | |
|         x = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
|         self.assertRaises(TypeError, x.add_suboffsets)
 | |
| 
 | |
|     def test_ndarray_slice_zero_shape(self):
 | |
|         items = [1,2,3,4,5,6,7,8,9,10,11,12]
 | |
| 
 | |
|         x = ndarray(items, shape=[12], format="L", flags=ND_WRITABLE)
 | |
|         y = ndarray(items, shape=[12], format="L")
 | |
|         x[4:4] = y[9:9]
 | |
|         self.assertEqual(x.tolist(), items)
 | |
| 
 | |
|         ml = memoryview(x)
 | |
|         mr = memoryview(y)
 | |
|         self.assertEqual(ml, x)
 | |
|         self.assertEqual(ml, y)
 | |
|         ml[4:4] = mr[9:9]
 | |
|         self.assertEqual(ml.tolist(), items)
 | |
| 
 | |
|         x = ndarray(items, shape=[3, 4], format="L", flags=ND_WRITABLE)
 | |
|         y = ndarray(items, shape=[4, 3], format="L")
 | |
|         x[1:2, 2:2] = y[1:2, 3:3]
 | |
|         self.assertEqual(x.tolist(), carray(items, [3, 4]))
 | |
| 
 | |
|     def test_ndarray_slice_multidim(self):
 | |
|         shape_t = (2, 3, 5)
 | |
|         ndim = len(shape_t)
 | |
|         nitems = prod(shape_t)
 | |
|         for shape in permutations(shape_t):
 | |
| 
 | |
|             fmt, items, _ = randitems(nitems)
 | |
|             itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|             for flags in (0, ND_PIL):
 | |
|                 nd = ndarray(items, shape=shape, format=fmt, flags=flags)
 | |
|                 lst = carray(items, shape)
 | |
| 
 | |
|                 for slices in rslices_ndim(ndim, shape):
 | |
| 
 | |
|                     listerr = None
 | |
|                     try:
 | |
|                         sliced = multislice(lst, slices)
 | |
|                     except Exception as e:
 | |
|                         listerr = e.__class__
 | |
| 
 | |
|                     nderr = None
 | |
|                     try:
 | |
|                         ndsliced = nd[slices]
 | |
|                     except Exception as e:
 | |
|                         nderr = e.__class__
 | |
| 
 | |
|                     if nderr or listerr:
 | |
|                         self.assertIs(nderr, listerr)
 | |
|                     else:
 | |
|                         self.assertEqual(ndsliced.tolist(), sliced)
 | |
| 
 | |
|     def test_ndarray_slice_redundant_suboffsets(self):
 | |
|         shape_t = (2, 3, 5, 2)
 | |
|         ndim = len(shape_t)
 | |
|         nitems = prod(shape_t)
 | |
|         for shape in permutations(shape_t):
 | |
| 
 | |
|             fmt, items, _ = randitems(nitems)
 | |
|             itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|             nd = ndarray(items, shape=shape, format=fmt)
 | |
|             nd.add_suboffsets()
 | |
|             ex = ndarray(items, shape=shape, format=fmt)
 | |
|             ex.add_suboffsets()
 | |
|             mv = memoryview(ex)
 | |
|             lst = carray(items, shape)
 | |
| 
 | |
|             for slices in rslices_ndim(ndim, shape):
 | |
| 
 | |
|                 listerr = None
 | |
|                 try:
 | |
|                     sliced = multislice(lst, slices)
 | |
|                 except Exception as e:
 | |
|                     listerr = e.__class__
 | |
| 
 | |
|                 nderr = None
 | |
|                 try:
 | |
|                     ndsliced = nd[slices]
 | |
|                 except Exception as e:
 | |
|                     nderr = e.__class__
 | |
| 
 | |
|                 if nderr or listerr:
 | |
|                     self.assertIs(nderr, listerr)
 | |
|                 else:
 | |
|                     self.assertEqual(ndsliced.tolist(), sliced)
 | |
| 
 | |
|     def test_ndarray_slice_assign_single(self):
 | |
|         for fmt, items, _ in iter_format(5):
 | |
|             for lslice in genslices(5):
 | |
|                 for rslice in genslices(5):
 | |
|                     for flags in (0, ND_PIL):
 | |
| 
 | |
|                         f = flags|ND_WRITABLE
 | |
|                         nd = ndarray(items, shape=[5], format=fmt, flags=f)
 | |
|                         ex = ndarray(items, shape=[5], format=fmt, flags=f)
 | |
|                         mv = memoryview(ex)
 | |
| 
 | |
|                         lsterr = None
 | |
|                         diff_structure = None
 | |
|                         lst = items[:]
 | |
|                         try:
 | |
|                             lval = lst[lslice]
 | |
|                             rval = lst[rslice]
 | |
|                             lst[lslice] = lst[rslice]
 | |
|                             diff_structure = len(lval) != len(rval)
 | |
|                         except Exception as e:
 | |
|                             lsterr = e.__class__
 | |
| 
 | |
|                         nderr = None
 | |
|                         try:
 | |
|                             nd[lslice] = nd[rslice]
 | |
|                         except Exception as e:
 | |
|                             nderr = e.__class__
 | |
| 
 | |
|                         if diff_structure: # ndarray cannot change shape
 | |
|                             self.assertIs(nderr, ValueError)
 | |
|                         else:
 | |
|                             self.assertEqual(nd.tolist(), lst)
 | |
|                             self.assertIs(nderr, lsterr)
 | |
| 
 | |
|                         if not is_memoryview_format(fmt):
 | |
|                             continue
 | |
| 
 | |
|                         mverr = None
 | |
|                         try:
 | |
|                             mv[lslice] = mv[rslice]
 | |
|                         except Exception as e:
 | |
|                             mverr = e.__class__
 | |
| 
 | |
|                         if diff_structure: # memoryview cannot change shape
 | |
|                             self.assertIs(mverr, ValueError)
 | |
|                         else:
 | |
|                             self.assertEqual(mv.tolist(), lst)
 | |
|                             self.assertEqual(mv, nd)
 | |
|                             self.assertIs(mverr, lsterr)
 | |
|                             self.verify(mv, obj=ex,
 | |
|                               itemsize=nd.itemsize, fmt=fmt, readonly=False,
 | |
|                               ndim=nd.ndim, shape=nd.shape, strides=nd.strides,
 | |
|                               lst=nd.tolist())
 | |
| 
 | |
|     def test_ndarray_slice_assign_multidim(self):
 | |
|         shape_t = (2, 3, 5)
 | |
|         ndim = len(shape_t)
 | |
|         nitems = prod(shape_t)
 | |
|         for shape in permutations(shape_t):
 | |
| 
 | |
|             fmt, items, _ = randitems(nitems)
 | |
| 
 | |
|             for flags in (0, ND_PIL):
 | |
|                 for _ in range(ITERATIONS):
 | |
|                     lslices, rslices = randslice_from_shape(ndim, shape)
 | |
| 
 | |
|                     nd = ndarray(items, shape=shape, format=fmt,
 | |
|                                  flags=flags|ND_WRITABLE)
 | |
|                     lst = carray(items, shape)
 | |
| 
 | |
|                     listerr = None
 | |
|                     try:
 | |
|                         result = multislice_assign(lst, lst, lslices, rslices)
 | |
|                     except Exception as e:
 | |
|                         listerr = e.__class__
 | |
| 
 | |
|                     nderr = None
 | |
|                     try:
 | |
|                         nd[lslices] = nd[rslices]
 | |
|                     except Exception as e:
 | |
|                         nderr = e.__class__
 | |
| 
 | |
|                     if nderr or listerr:
 | |
|                         self.assertIs(nderr, listerr)
 | |
|                     else:
 | |
|                         self.assertEqual(nd.tolist(), result)
 | |
| 
 | |
|     def test_ndarray_random(self):
 | |
|         # construction of valid arrays
 | |
|         for _ in range(ITERATIONS):
 | |
|             for fmt in fmtdict['@']:
 | |
|                 itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|                 t = rand_structure(itemsize, True, maxdim=MAXDIM,
 | |
|                                    maxshape=MAXSHAPE)
 | |
|                 self.assertTrue(verify_structure(*t))
 | |
|                 items = randitems_from_structure(fmt, t)
 | |
| 
 | |
|                 x = ndarray_from_structure(items, fmt, t)
 | |
|                 xlist = x.tolist()
 | |
| 
 | |
|                 mv = memoryview(x)
 | |
|                 if is_memoryview_format(fmt):
 | |
|                     mvlist = mv.tolist()
 | |
|                     self.assertEqual(mvlist, xlist)
 | |
| 
 | |
|                 if t[2] > 0:
 | |
|                     # ndim > 0: test against suboffsets representation.
 | |
|                     y = ndarray_from_structure(items, fmt, t, flags=ND_PIL)
 | |
|                     ylist = y.tolist()
 | |
|                     self.assertEqual(xlist, ylist)
 | |
| 
 | |
|                     mv = memoryview(y)
 | |
|                     if is_memoryview_format(fmt):
 | |
|                         self.assertEqual(mv, y)
 | |
|                         mvlist = mv.tolist()
 | |
|                         self.assertEqual(mvlist, ylist)
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     shape = t[3]
 | |
|                     if 0 in shape:
 | |
|                         continue # http://projects.scipy.org/numpy/ticket/1910
 | |
|                     z = numpy_array_from_structure(items, fmt, t)
 | |
|                     self.verify(x, obj=None,
 | |
|                                 itemsize=z.itemsize, fmt=fmt, readonly=False,
 | |
|                                 ndim=z.ndim, shape=z.shape, strides=z.strides,
 | |
|                                 lst=z.tolist())
 | |
| 
 | |
|     def test_ndarray_random_invalid(self):
 | |
|         # exceptions during construction of invalid arrays
 | |
|         for _ in range(ITERATIONS):
 | |
|             for fmt in fmtdict['@']:
 | |
|                 itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|                 t = rand_structure(itemsize, False, maxdim=MAXDIM,
 | |
|                                    maxshape=MAXSHAPE)
 | |
|                 self.assertFalse(verify_structure(*t))
 | |
|                 items = randitems_from_structure(fmt, t)
 | |
| 
 | |
|                 nderr = False
 | |
|                 try:
 | |
|                     x = ndarray_from_structure(items, fmt, t)
 | |
|                 except Exception as e:
 | |
|                     nderr = e.__class__
 | |
|                 self.assertTrue(nderr)
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     numpy_err = False
 | |
|                     try:
 | |
|                         y = numpy_array_from_structure(items, fmt, t)
 | |
|                     except Exception as e:
 | |
|                         numpy_err = e.__class__
 | |
| 
 | |
|                     if 0: # http://projects.scipy.org/numpy/ticket/1910
 | |
|                         self.assertTrue(numpy_err)
 | |
| 
 | |
|     def test_ndarray_random_slice_assign(self):
 | |
|         # valid slice assignments
 | |
|         for _ in range(ITERATIONS):
 | |
|             for fmt in fmtdict['@']:
 | |
|                 itemsize = struct.calcsize(fmt)
 | |
| 
 | |
|                 lshape, rshape, lslices, rslices = \
 | |
|                     rand_aligned_slices(maxdim=MAXDIM, maxshape=MAXSHAPE)
 | |
|                 tl = rand_structure(itemsize, True, shape=lshape)
 | |
|                 tr = rand_structure(itemsize, True, shape=rshape)
 | |
|                 self.assertTrue(verify_structure(*tl))
 | |
|                 self.assertTrue(verify_structure(*tr))
 | |
|                 litems = randitems_from_structure(fmt, tl)
 | |
|                 ritems = randitems_from_structure(fmt, tr)
 | |
| 
 | |
|                 xl = ndarray_from_structure(litems, fmt, tl)
 | |
|                 xr = ndarray_from_structure(ritems, fmt, tr)
 | |
|                 xl[lslices] = xr[rslices]
 | |
|                 xllist = xl.tolist()
 | |
|                 xrlist = xr.tolist()
 | |
| 
 | |
|                 ml = memoryview(xl)
 | |
|                 mr = memoryview(xr)
 | |
|                 self.assertEqual(ml.tolist(), xllist)
 | |
|                 self.assertEqual(mr.tolist(), xrlist)
 | |
| 
 | |
|                 if tl[2] > 0 and tr[2] > 0:
 | |
|                     # ndim > 0: test against suboffsets representation.
 | |
|                     yl = ndarray_from_structure(litems, fmt, tl, flags=ND_PIL)
 | |
|                     yr = ndarray_from_structure(ritems, fmt, tr, flags=ND_PIL)
 | |
|                     yl[lslices] = yr[rslices]
 | |
|                     yllist = yl.tolist()
 | |
|                     yrlist = yr.tolist()
 | |
|                     self.assertEqual(xllist, yllist)
 | |
|                     self.assertEqual(xrlist, yrlist)
 | |
| 
 | |
|                     ml = memoryview(yl)
 | |
|                     mr = memoryview(yr)
 | |
|                     self.assertEqual(ml.tolist(), yllist)
 | |
|                     self.assertEqual(mr.tolist(), yrlist)
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     if 0 in lshape or 0 in rshape:
 | |
|                         continue # http://projects.scipy.org/numpy/ticket/1910
 | |
| 
 | |
|                     zl = numpy_array_from_structure(litems, fmt, tl)
 | |
|                     zr = numpy_array_from_structure(ritems, fmt, tr)
 | |
|                     zl[lslices] = zr[rslices]
 | |
| 
 | |
|                     if not is_overlapping(tl) and not is_overlapping(tr):
 | |
|                         # Slice assignment of overlapping structures
 | |
|                         # is undefined in NumPy.
 | |
|                         self.verify(xl, obj=None,
 | |
|                                     itemsize=zl.itemsize, fmt=fmt, readonly=False,
 | |
|                                     ndim=zl.ndim, shape=zl.shape,
 | |
|                                     strides=zl.strides, lst=zl.tolist())
 | |
| 
 | |
|                     self.verify(xr, obj=None,
 | |
|                                 itemsize=zr.itemsize, fmt=fmt, readonly=False,
 | |
|                                 ndim=zr.ndim, shape=zr.shape,
 | |
|                                 strides=zr.strides, lst=zr.tolist())
 | |
| 
 | |
|     def test_ndarray_re_export(self):
 | |
|         items = [1,2,3,4,5,6,7,8,9,10,11,12]
 | |
| 
 | |
|         nd = ndarray(items, shape=[3,4], flags=ND_PIL)
 | |
|         ex = ndarray(nd)
 | |
| 
 | |
|         self.assertTrue(ex.flags & ND_PIL)
 | |
|         self.assertIs(ex.obj, nd)
 | |
|         self.assertEqual(ex.suboffsets, (0, -1))
 | |
|         self.assertFalse(ex.c_contiguous)
 | |
|         self.assertFalse(ex.f_contiguous)
 | |
|         self.assertFalse(ex.contiguous)
 | |
| 
 | |
|     def test_ndarray_zero_shape(self):
 | |
|         # zeros in shape
 | |
|         for flags in (0, ND_PIL):
 | |
|             nd = ndarray([1,2,3], shape=[0], flags=flags)
 | |
|             mv = memoryview(nd)
 | |
|             self.assertEqual(mv, nd)
 | |
|             self.assertEqual(nd.tolist(), [])
 | |
|             self.assertEqual(mv.tolist(), [])
 | |
| 
 | |
|             nd = ndarray([1,2,3], shape=[0,3,3], flags=flags)
 | |
|             self.assertEqual(nd.tolist(), [])
 | |
| 
 | |
|             nd = ndarray([1,2,3], shape=[3,0,3], flags=flags)
 | |
|             self.assertEqual(nd.tolist(), [[], [], []])
 | |
| 
 | |
|             nd = ndarray([1,2,3], shape=[3,3,0], flags=flags)
 | |
|             self.assertEqual(nd.tolist(),
 | |
|                              [[[], [], []], [[], [], []], [[], [], []]])
 | |
| 
 | |
|     def test_ndarray_zero_strides(self):
 | |
|         # zero strides
 | |
|         for flags in (0, ND_PIL):
 | |
|             nd = ndarray([1], shape=[5], strides=[0], flags=flags)
 | |
|             mv = memoryview(nd)
 | |
|             self.assertEqual(mv, nd)
 | |
|             self.assertEqual(nd.tolist(), [1, 1, 1, 1, 1])
 | |
|             self.assertEqual(mv.tolist(), [1, 1, 1, 1, 1])
 | |
| 
 | |
|     def test_ndarray_offset(self):
 | |
|         nd = ndarray(list(range(20)), shape=[3], offset=7)
 | |
|         self.assertEqual(nd.offset, 7)
 | |
|         self.assertEqual(nd.tolist(), [7,8,9])
 | |
| 
 | |
|     def test_ndarray_memoryview_from_buffer(self):
 | |
|         for flags in (0, ND_PIL):
 | |
|             nd = ndarray(list(range(3)), shape=[3], flags=flags)
 | |
|             m = nd.memoryview_from_buffer()
 | |
|             self.assertEqual(m, nd)
 | |
| 
 | |
|     def test_ndarray_get_pointer(self):
 | |
|         for flags in (0, ND_PIL):
 | |
|             nd = ndarray(list(range(3)), shape=[3], flags=flags)
 | |
|             for i in range(3):
 | |
|                 self.assertEqual(nd[i], get_pointer(nd, [i]))
 | |
| 
 | |
|     def test_ndarray_tolist_null_strides(self):
 | |
|         ex = ndarray(list(range(20)), shape=[2,2,5])
 | |
| 
 | |
|         nd = ndarray(ex, getbuf=PyBUF_ND|PyBUF_FORMAT)
 | |
|         self.assertEqual(nd.tolist(), ex.tolist())
 | |
| 
 | |
|         m = memoryview(ex)
 | |
|         self.assertEqual(m.tolist(), ex.tolist())
 | |
| 
 | |
|     def test_ndarray_cmp_contig(self):
 | |
| 
 | |
|         self.assertFalse(cmp_contig(b"123", b"456"))
 | |
| 
 | |
|         x = ndarray(list(range(12)), shape=[3,4])
 | |
|         y = ndarray(list(range(12)), shape=[4,3])
 | |
|         self.assertFalse(cmp_contig(x, y))
 | |
| 
 | |
|         x = ndarray([1], shape=[1], format="B")
 | |
|         self.assertTrue(cmp_contig(x, b'\x01'))
 | |
|         self.assertTrue(cmp_contig(b'\x01', x))
 | |
| 
 | |
|     def test_ndarray_hash(self):
 | |
| 
 | |
|         a = array.array('L', [1,2,3])
 | |
|         nd = ndarray(a)
 | |
|         self.assertRaises(ValueError, hash, nd)
 | |
| 
 | |
|         # one-dimensional
 | |
|         b = bytes(list(range(12)))
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[12])
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         # C-contiguous
 | |
|         nd = ndarray(list(range(12)), shape=[3,4])
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[3,2,2])
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         # Fortran contiguous
 | |
|         b = bytes(transpose(list(range(12)), shape=[4,3]))
 | |
|         nd = ndarray(list(range(12)), shape=[3,4], flags=ND_FORTRAN)
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         b = bytes(transpose(list(range(12)), shape=[2,3,2]))
 | |
|         nd = ndarray(list(range(12)), shape=[2,3,2], flags=ND_FORTRAN)
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         # suboffsets
 | |
|         b = bytes(list(range(12)))
 | |
|         nd = ndarray(list(range(12)), shape=[2,2,3], flags=ND_PIL)
 | |
|         self.assertEqual(hash(nd), hash(b))
 | |
| 
 | |
|         # non-byte formats
 | |
|         nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
 | |
|         self.assertEqual(hash(nd), hash(nd.tobytes()))
 | |
| 
 | |
|     def test_py_buffer_to_contiguous(self):
 | |
| 
 | |
|         # The requests are used in _testbuffer.c:py_buffer_to_contiguous
 | |
|         # to generate buffers without full information for testing.
 | |
|         requests = (
 | |
|             # distinct flags
 | |
|             PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE,
 | |
|             # compound requests
 | |
|             PyBUF_FULL, PyBUF_FULL_RO,
 | |
|             PyBUF_RECORDS, PyBUF_RECORDS_RO,
 | |
|             PyBUF_STRIDED, PyBUF_STRIDED_RO,
 | |
|             PyBUF_CONTIG, PyBUF_CONTIG_RO,
 | |
|         )
 | |
| 
 | |
|         # no buffer interface
 | |
|         self.assertRaises(TypeError, py_buffer_to_contiguous, {}, 'F',
 | |
|                           PyBUF_FULL_RO)
 | |
| 
 | |
|         # scalar, read-only request
 | |
|         nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             for request in requests:
 | |
|                 b = py_buffer_to_contiguous(nd, order, request)
 | |
|                 self.assertEqual(b, nd.tobytes())
 | |
| 
 | |
|         # zeros in shape
 | |
|         nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             for request in requests:
 | |
|                 b = py_buffer_to_contiguous(nd, order, request)
 | |
|                 self.assertEqual(b, b'')
 | |
| 
 | |
|         nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L",
 | |
|                      flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             for request in requests:
 | |
|                 b = py_buffer_to_contiguous(nd, order, request)
 | |
|                 self.assertEqual(b, b'')
 | |
| 
 | |
|         ### One-dimensional arrays are trivial, since Fortran and C order
 | |
|         ### are the same.
 | |
| 
 | |
|         # one-dimensional
 | |
|         for f in [0, ND_FORTRAN]:
 | |
|             nd = ndarray([1], shape=[1], format="h", flags=f|ND_WRITABLE)
 | |
|             ndbytes = nd.tobytes()
 | |
|             for order in ['C', 'F', 'A']:
 | |
|                 for request in requests:
 | |
|                     b = py_buffer_to_contiguous(nd, order, request)
 | |
|                     self.assertEqual(b, ndbytes)
 | |
| 
 | |
|             nd = ndarray([1, 2, 3], shape=[3], format="b", flags=f|ND_WRITABLE)
 | |
|             ndbytes = nd.tobytes()
 | |
|             for order in ['C', 'F', 'A']:
 | |
|                 for request in requests:
 | |
|                     b = py_buffer_to_contiguous(nd, order, request)
 | |
|                     self.assertEqual(b, ndbytes)
 | |
| 
 | |
|         # one-dimensional, non-contiguous input
 | |
|         nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE)
 | |
|         ndbytes = nd.tobytes()
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             for request in [PyBUF_STRIDES, PyBUF_FULL]:
 | |
|                 b = py_buffer_to_contiguous(nd, order, request)
 | |
|                 self.assertEqual(b, ndbytes)
 | |
| 
 | |
|         nd = nd[::-1]
 | |
|         ndbytes = nd.tobytes()
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             for request in requests:
 | |
|                 try:
 | |
|                     b = py_buffer_to_contiguous(nd, order, request)
 | |
|                 except BufferError:
 | |
|                     continue
 | |
|                 self.assertEqual(b, ndbytes)
 | |
| 
 | |
|         ###
 | |
|         ### Multi-dimensional arrays:
 | |
|         ###
 | |
|         ### The goal here is to preserve the logical representation of the
 | |
|         ### input array but change the physical representation if necessary.
 | |
|         ###
 | |
|         ### _testbuffer example:
 | |
|         ### ====================
 | |
|         ###
 | |
|         ###    C input array:
 | |
|         ###    --------------
 | |
|         ###       >>> nd = ndarray(list(range(12)), shape=[3, 4])
 | |
|         ###       >>> nd.tolist()
 | |
|         ###       [[0, 1, 2, 3],
 | |
|         ###        [4, 5, 6, 7],
 | |
|         ###        [8, 9, 10, 11]]
 | |
|         ###
 | |
|         ###    Fortran output:
 | |
|         ###    ---------------
 | |
|         ###       >>> py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO)
 | |
|         ###       >>> b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b'
 | |
|         ###
 | |
|         ###    The return value corresponds to this input list for
 | |
|         ###    _testbuffer's ndarray:
 | |
|         ###       >>> nd = ndarray([0,4,8,1,5,9,2,6,10,3,7,11], shape=[3,4],
 | |
|         ###                        flags=ND_FORTRAN)
 | |
|         ###       >>> nd.tolist()
 | |
|         ###       [[0, 1, 2, 3],
 | |
|         ###        [4, 5, 6, 7],
 | |
|         ###        [8, 9, 10, 11]]
 | |
|         ###
 | |
|         ###    The logical array is the same, but the values in memory are now
 | |
|         ###    in Fortran order.
 | |
|         ###
 | |
|         ### NumPy example:
 | |
|         ### ==============
 | |
|         ###    _testbuffer's ndarray takes lists to initialize the memory.
 | |
|         ###    Here's the same sequence in NumPy:
 | |
|         ###
 | |
|         ###    C input:
 | |
|         ###    --------
 | |
|         ###       >>> nd = ndarray(buffer=bytearray(list(range(12))),
 | |
|         ###                        shape=[3, 4], dtype='B')
 | |
|         ###       >>> nd
 | |
|         ###       array([[ 0,  1,  2,  3],
 | |
|         ###              [ 4,  5,  6,  7],
 | |
|         ###              [ 8,  9, 10, 11]], dtype=uint8)
 | |
|         ###
 | |
|         ###    Fortran output:
 | |
|         ###    ---------------
 | |
|         ###       >>> fortran_buf = nd.tostring(order='F')
 | |
|         ###       >>> fortran_buf
 | |
|         ###       b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b'
 | |
|         ###
 | |
|         ###       >>> nd = ndarray(buffer=fortran_buf, shape=[3, 4],
 | |
|         ###                        dtype='B', order='F')
 | |
|         ###
 | |
|         ###       >>> nd
 | |
|         ###       array([[ 0,  1,  2,  3],
 | |
|         ###              [ 4,  5,  6,  7],
 | |
|         ###              [ 8,  9, 10, 11]], dtype=uint8)
 | |
|         ###
 | |
| 
 | |
|         # multi-dimensional, contiguous input
 | |
|         lst = list(range(12))
 | |
|         for f in [0, ND_FORTRAN]:
 | |
|             nd = ndarray(lst, shape=[3, 4], flags=f|ND_WRITABLE)
 | |
|             if numpy_array:
 | |
|                 na = numpy_array(buffer=bytearray(lst),
 | |
|                                  shape=[3, 4], dtype='B',
 | |
|                                  order='C' if f == 0 else 'F')
 | |
| 
 | |
|             # 'C' request
 | |
|             if f == ND_FORTRAN: # 'F' to 'C'
 | |
|                 x = ndarray(transpose(lst, [4, 3]), shape=[3, 4],
 | |
|                             flags=ND_WRITABLE)
 | |
|                 expected = x.tobytes()
 | |
|             else:
 | |
|                 expected = nd.tobytes()
 | |
|             for request in requests:
 | |
|                 try:
 | |
|                     b = py_buffer_to_contiguous(nd, 'C', request)
 | |
|                 except BufferError:
 | |
|                     continue
 | |
| 
 | |
|                 self.assertEqual(b, expected)
 | |
| 
 | |
|                 # Check that output can be used as the basis for constructing
 | |
|                 # a C array that is logically identical to the input array.
 | |
|                 y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
 | |
|                 self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     self.assertEqual(b, na.tostring(order='C'))
 | |
| 
 | |
|             # 'F' request
 | |
|             if f == 0: # 'C' to 'F'
 | |
|                 x = ndarray(transpose(lst, [3, 4]), shape=[4, 3],
 | |
|                             flags=ND_WRITABLE)
 | |
|             else:
 | |
|                 x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE)
 | |
|             expected = x.tobytes()
 | |
|             for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT,
 | |
|                             PyBUF_STRIDES, PyBUF_ND]:
 | |
|                 try:
 | |
|                     b = py_buffer_to_contiguous(nd, 'F', request)
 | |
|                 except BufferError:
 | |
|                     continue
 | |
|                 self.assertEqual(b, expected)
 | |
| 
 | |
|                 # Check that output can be used as the basis for constructing
 | |
|                 # a Fortran array that is logically identical to the input array.
 | |
|                 y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE)
 | |
|                 self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     self.assertEqual(b, na.tostring(order='F'))
 | |
| 
 | |
|             # 'A' request
 | |
|             if f == ND_FORTRAN:
 | |
|                 x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE)
 | |
|                 expected = x.tobytes()
 | |
|             else:
 | |
|                 expected = nd.tobytes()
 | |
|             for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT,
 | |
|                             PyBUF_STRIDES, PyBUF_ND]:
 | |
|                 try:
 | |
|                     b = py_buffer_to_contiguous(nd, 'A', request)
 | |
|                 except BufferError:
 | |
|                     continue
 | |
| 
 | |
|                 self.assertEqual(b, expected)
 | |
| 
 | |
|                 # Check that output can be used as the basis for constructing
 | |
|                 # an array with order=f that is logically identical to the input
 | |
|                 # array.
 | |
|                 y = ndarray([v for v in b], shape=[3, 4], flags=f|ND_WRITABLE)
 | |
|                 self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|                 if numpy_array:
 | |
|                     self.assertEqual(b, na.tostring(order='A'))
 | |
| 
 | |
|         # multi-dimensional, non-contiguous input
 | |
|         nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL)
 | |
| 
 | |
|         # 'C'
 | |
|         b = py_buffer_to_contiguous(nd, 'C', PyBUF_FULL_RO)
 | |
|         self.assertEqual(b, nd.tobytes())
 | |
|         y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
 | |
|         self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|         # 'F'
 | |
|         b = py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO)
 | |
|         x = ndarray(transpose(lst, [3, 4]), shape=[4, 3], flags=ND_WRITABLE)
 | |
|         self.assertEqual(b, x.tobytes())
 | |
|         y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE)
 | |
|         self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|         # 'A'
 | |
|         b = py_buffer_to_contiguous(nd, 'A', PyBUF_FULL_RO)
 | |
|         self.assertEqual(b, nd.tobytes())
 | |
|         y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
 | |
|         self.assertEqual(memoryview(y), memoryview(nd))
 | |
| 
 | |
|     def test_memoryview_construction(self):
 | |
| 
 | |
|         items_shape = [(9, []), ([1,2,3], [3]), (list(range(2*3*5)), [2,3,5])]
 | |
| 
 | |
|         # NumPy style, C-contiguous:
 | |
|         for items, shape in items_shape:
 | |
| 
 | |
|             # From PEP-3118 compliant exporter:
 | |
|             ex = ndarray(items, shape=shape)
 | |
|             m = memoryview(ex)
 | |
|             self.assertTrue(m.c_contiguous)
 | |
|             self.assertTrue(m.contiguous)
 | |
| 
 | |
|             ndim = len(shape)
 | |
|             strides = strides_from_shape(ndim, shape, 1, 'C')
 | |
|             lst = carray(items, shape)
 | |
| 
 | |
|             self.verify(m, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|             # From memoryview:
 | |
|             m2 = memoryview(m)
 | |
|             self.verify(m2, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|             # PyMemoryView_FromBuffer(): no strides
 | |
|             nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
 | |
|             self.assertEqual(nd.strides, ())
 | |
|             m = nd.memoryview_from_buffer()
 | |
|             self.verify(m, obj=None,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|             # PyMemoryView_FromBuffer(): no format, shape, strides
 | |
|             nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
|             self.assertEqual(nd.format, '')
 | |
|             self.assertEqual(nd.shape, ())
 | |
|             self.assertEqual(nd.strides, ())
 | |
|             m = nd.memoryview_from_buffer()
 | |
| 
 | |
|             lst = [items] if ndim == 0 else items
 | |
|             self.verify(m, obj=None,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=1, shape=[ex.nbytes], strides=(1,),
 | |
|                         lst=lst)
 | |
| 
 | |
|         # NumPy style, Fortran contiguous:
 | |
|         for items, shape in items_shape:
 | |
| 
 | |
|             # From PEP-3118 compliant exporter:
 | |
|             ex = ndarray(items, shape=shape, flags=ND_FORTRAN)
 | |
|             m = memoryview(ex)
 | |
|             self.assertTrue(m.f_contiguous)
 | |
|             self.assertTrue(m.contiguous)
 | |
| 
 | |
|             ndim = len(shape)
 | |
|             strides = strides_from_shape(ndim, shape, 1, 'F')
 | |
|             lst = farray(items, shape)
 | |
| 
 | |
|             self.verify(m, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|             # From memoryview:
 | |
|             m2 = memoryview(m)
 | |
|             self.verify(m2, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|         # PIL style:
 | |
|         for items, shape in items_shape[1:]:
 | |
| 
 | |
|             # From PEP-3118 compliant exporter:
 | |
|             ex = ndarray(items, shape=shape, flags=ND_PIL)
 | |
|             m = memoryview(ex)
 | |
| 
 | |
|             ndim = len(shape)
 | |
|             lst = carray(items, shape)
 | |
| 
 | |
|             self.verify(m, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=ex.strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|             # From memoryview:
 | |
|             m2 = memoryview(m)
 | |
|             self.verify(m2, obj=ex,
 | |
|                         itemsize=1, fmt='B', readonly=True,
 | |
|                         ndim=ndim, shape=shape, strides=ex.strides,
 | |
|                         lst=lst)
 | |
| 
 | |
|         # Invalid number of arguments:
 | |
|         self.assertRaises(TypeError, memoryview, b'9', 'x')
 | |
|         # Not a buffer provider:
 | |
|         self.assertRaises(TypeError, memoryview, {})
 | |
|         # Non-compliant buffer provider:
 | |
|         ex = ndarray([1,2,3], shape=[3])
 | |
|         nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
 | |
|         self.assertRaises(BufferError, memoryview, nd)
 | |
|         nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
 | |
|         self.assertRaises(BufferError, memoryview, nd)
 | |
| 
 | |
|         # ndim > 64
 | |
|         nd = ndarray([1]*128, shape=[1]*128, format='L')
 | |
|         self.assertRaises(ValueError, memoryview, nd)
 | |
|         self.assertRaises(ValueError, nd.memoryview_from_buffer)
 | |
|         self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'C')
 | |
|         self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'F')
 | |
|         self.assertRaises(ValueError, get_contiguous, nd[::-1], PyBUF_READ, 'C')
 | |
| 
 | |
|     def test_memoryview_cast_zero_shape(self):
 | |
|         # Casts are undefined if buffer is multidimensional and shape
 | |
|         # contains zeros. These arrays are regarded as C-contiguous by
 | |
|         # Numpy and PyBuffer_GetContiguous(), so they are not caught by
 | |
|         # the test for C-contiguity in memory_cast().
 | |
|         items = [1,2,3]
 | |
|         for shape in ([0,3,3], [3,0,3], [0,3,3]):
 | |
|             ex = ndarray(items, shape=shape)
 | |
|             self.assertTrue(ex.c_contiguous)
 | |
|             msrc = memoryview(ex)
 | |
|             self.assertRaises(TypeError, msrc.cast, 'c')
 | |
|         # Monodimensional empty view can be cast (issue #19014).
 | |
|         for fmt, _, _ in iter_format(1, 'memoryview'):
 | |
|             msrc = memoryview(b'')
 | |
|             m = msrc.cast(fmt)
 | |
|             self.assertEqual(m.tobytes(), b'')
 | |
|             self.assertEqual(m.tolist(), [])
 | |
| 
 | |
|     check_sizeof = support.check_sizeof
 | |
| 
 | |
|     def test_memoryview_sizeof(self):
 | |
|         check = self.check_sizeof
 | |
|         vsize = support.calcvobjsize
 | |
|         base_struct = 'Pnin 2P2n2i5P P'
 | |
|         per_dim = '3n'
 | |
| 
 | |
|         items = list(range(8))
 | |
|         check(memoryview(b''), vsize(base_struct + 1 * per_dim))
 | |
|         a = ndarray(items, shape=[2, 4], format="b")
 | |
|         check(memoryview(a), vsize(base_struct + 2 * per_dim))
 | |
|         a = ndarray(items, shape=[2, 2, 2], format="b")
 | |
|         check(memoryview(a), vsize(base_struct + 3 * per_dim))
 | |
| 
 | |
|     def test_memoryview_struct_module(self):
 | |
| 
 | |
|         class INT(object):
 | |
|             def __init__(self, val):
 | |
|                 self.val = val
 | |
|             def __int__(self):
 | |
|                 return self.val
 | |
| 
 | |
|         class IDX(object):
 | |
|             def __init__(self, val):
 | |
|                 self.val = val
 | |
|             def __index__(self):
 | |
|                 return self.val
 | |
| 
 | |
|         def f(): return 7
 | |
| 
 | |
|         values = [INT(9), IDX(9),
 | |
|                   2.2+3j, Decimal("-21.1"), 12.2, Fraction(5, 2),
 | |
|                   [1,2,3], {4,5,6}, {7:8}, (), (9,),
 | |
|                   True, False, None, Ellipsis,
 | |
|                   b'a', b'abc', bytearray(b'a'), bytearray(b'abc'),
 | |
|                   'a', 'abc', r'a', r'abc',
 | |
|                   f, lambda x: x]
 | |
| 
 | |
|         for fmt, items, item in iter_format(10, 'memoryview'):
 | |
|             ex = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
 | |
|             nd = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
 | |
|             m = memoryview(ex)
 | |
| 
 | |
|             struct.pack_into(fmt, nd, 0, item)
 | |
|             m[0] = item
 | |
|             self.assertEqual(m[0], nd[0])
 | |
| 
 | |
|             itemsize = struct.calcsize(fmt)
 | |
|             if 'P' in fmt:
 | |
|                 continue
 | |
| 
 | |
|             for v in values:
 | |
|                 struct_err = None
 | |
|                 try:
 | |
|                     struct.pack_into(fmt, nd, itemsize, v)
 | |
|                 except struct.error:
 | |
|                     struct_err = struct.error
 | |
| 
 | |
|                 mv_err = None
 | |
|                 try:
 | |
|                     m[1] = v
 | |
|                 except (TypeError, ValueError) as e:
 | |
|                     mv_err = e.__class__
 | |
| 
 | |
|                 if struct_err or mv_err:
 | |
|                     self.assertIsNot(struct_err, None)
 | |
|                     self.assertIsNot(mv_err, None)
 | |
|                 else:
 | |
|                     self.assertEqual(m[1], nd[1])
 | |
| 
 | |
|     def test_memoryview_cast_zero_strides(self):
 | |
|         # Casts are undefined if strides contains zeros. These arrays are
 | |
|         # (sometimes!) regarded as C-contiguous by Numpy, but not by
 | |
|         # PyBuffer_GetContiguous().
 | |
|         ex = ndarray([1,2,3], shape=[3], strides=[0])
 | |
|         self.assertFalse(ex.c_contiguous)
 | |
|         msrc = memoryview(ex)
 | |
|         self.assertRaises(TypeError, msrc.cast, 'c')
 | |
| 
 | |
|     def test_memoryview_cast_invalid(self):
 | |
|         # invalid format
 | |
|         for sfmt in NON_BYTE_FORMAT:
 | |
|             sformat = '@' + sfmt if randrange(2) else sfmt
 | |
|             ssize = struct.calcsize(sformat)
 | |
|             for dfmt in NON_BYTE_FORMAT:
 | |
|                 dformat = '@' + dfmt if randrange(2) else dfmt
 | |
|                 dsize = struct.calcsize(dformat)
 | |
|                 ex = ndarray(list(range(32)), shape=[32//ssize], format=sformat)
 | |
|                 msrc = memoryview(ex)
 | |
|                 self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize])
 | |
| 
 | |
|         for sfmt, sitems, _ in iter_format(1):
 | |
|             ex = ndarray(sitems, shape=[1], format=sfmt)
 | |
|             msrc = memoryview(ex)
 | |
|             for dfmt, _, _ in iter_format(1):
 | |
|                 if not is_memoryview_format(dfmt):
 | |
|                     self.assertRaises(ValueError, msrc.cast, dfmt,
 | |
|                                       [32//dsize])
 | |
|                 else:
 | |
|                     if not is_byte_format(sfmt) and not is_byte_format(dfmt):
 | |
|                         self.assertRaises(TypeError, msrc.cast, dfmt,
 | |
|                                           [32//dsize])
 | |
| 
 | |
|         # invalid shape
 | |
|         size_h = struct.calcsize('h')
 | |
|         size_d = struct.calcsize('d')
 | |
|         ex = ndarray(list(range(2*2*size_d)), shape=[2,2,size_d], format='h')
 | |
|         msrc = memoryview(ex)
 | |
|         self.assertRaises(TypeError, msrc.cast, shape=[2,2,size_h], format='d')
 | |
| 
 | |
|         ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         # incorrect number of args
 | |
|         self.assertRaises(TypeError, m.cast)
 | |
|         self.assertRaises(TypeError, m.cast, 1, 2, 3)
 | |
| 
 | |
|         # incorrect dest format type
 | |
|         self.assertRaises(TypeError, m.cast, {})
 | |
| 
 | |
|         # incorrect dest format
 | |
|         self.assertRaises(ValueError, m.cast, "X")
 | |
|         self.assertRaises(ValueError, m.cast, "@X")
 | |
|         self.assertRaises(ValueError, m.cast, "@XY")
 | |
| 
 | |
|         # dest format not implemented
 | |
|         self.assertRaises(ValueError, m.cast, "=B")
 | |
|         self.assertRaises(ValueError, m.cast, "!L")
 | |
|         self.assertRaises(ValueError, m.cast, "<P")
 | |
|         self.assertRaises(ValueError, m.cast, ">l")
 | |
|         self.assertRaises(ValueError, m.cast, "BI")
 | |
|         self.assertRaises(ValueError, m.cast, "xBI")
 | |
| 
 | |
|         # src format not implemented
 | |
|         ex = ndarray([(1,2), (3,4)], shape=[2], format="II")
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__, 0)
 | |
|         self.assertRaises(NotImplementedError, m.__setitem__, 0, 8)
 | |
|         self.assertRaises(NotImplementedError, m.tolist)
 | |
| 
 | |
|         # incorrect shape type
 | |
|         ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, m.cast, "B", shape={})
 | |
| 
 | |
|         # incorrect shape elements
 | |
|         ex = ndarray(list(range(120)), shape=[2*3*4*5])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(OverflowError, m.cast, "B", shape=[2**64])
 | |
|         self.assertRaises(ValueError, m.cast, "B", shape=[-1])
 | |
|         self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,-1])
 | |
|         self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,0])
 | |
|         self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5,6,7,'x'])
 | |
| 
 | |
|         # N-D -> N-D cast
 | |
|         ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3,5,7,11])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
 | |
| 
 | |
|         # cast with ndim > 64
 | |
|         nd = ndarray(list(range(128)), shape=[128], format='I')
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(ValueError, m.cast, 'I', [1]*128)
 | |
| 
 | |
|         # view->len not a multiple of itemsize
 | |
|         ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
 | |
| 
 | |
|         # product(shape) * itemsize != buffer size
 | |
|         ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5])
 | |
| 
 | |
|         # product(shape) * itemsize overflow
 | |
|         nd = ndarray(list(range(128)), shape=[128], format='I')
 | |
|         m1 = memoryview(nd)
 | |
|         nd = ndarray(list(range(128)), shape=[128], format='B')
 | |
|         m2 = memoryview(nd)
 | |
|         if sys.maxsize == 2**63-1:
 | |
|             self.assertRaises(TypeError, m1.cast, 'B',
 | |
|                               [7, 7, 73, 127, 337, 92737, 649657])
 | |
|             self.assertRaises(ValueError, m1.cast, 'B',
 | |
|                               [2**20, 2**20, 2**10, 2**10, 2**3])
 | |
|             self.assertRaises(ValueError, m2.cast, 'I',
 | |
|                               [2**20, 2**20, 2**10, 2**10, 2**1])
 | |
|         else:
 | |
|             self.assertRaises(TypeError, m1.cast, 'B',
 | |
|                               [1, 2147483647])
 | |
|             self.assertRaises(ValueError, m1.cast, 'B',
 | |
|                               [2**10, 2**10, 2**5, 2**5, 2**1])
 | |
|             self.assertRaises(ValueError, m2.cast, 'I',
 | |
|                               [2**10, 2**10, 2**5, 2**3, 2**1])
 | |
| 
 | |
|     def test_memoryview_cast(self):
 | |
|         bytespec = (
 | |
|           ('B', lambda ex: list(ex.tobytes())),
 | |
|           ('b', lambda ex: [x-256 if x > 127 else x for x in list(ex.tobytes())]),
 | |
|           ('c', lambda ex: [bytes(chr(x), 'latin-1') for x in list(ex.tobytes())]),
 | |
|         )
 | |
| 
 | |
|         def iter_roundtrip(ex, m, items, fmt):
 | |
|             srcsize = struct.calcsize(fmt)
 | |
|             for bytefmt, to_bytelist in bytespec:
 | |
| 
 | |
|                 m2 = m.cast(bytefmt)
 | |
|                 lst = to_bytelist(ex)
 | |
|                 self.verify(m2, obj=ex,
 | |
|                             itemsize=1, fmt=bytefmt, readonly=False,
 | |
|                             ndim=1, shape=[31*srcsize], strides=(1,),
 | |
|                             lst=lst, cast=True)
 | |
| 
 | |
|                 m3 = m2.cast(fmt)
 | |
|                 self.assertEqual(m3, ex)
 | |
|                 lst = ex.tolist()
 | |
|                 self.verify(m3, obj=ex,
 | |
|                             itemsize=srcsize, fmt=fmt, readonly=False,
 | |
|                             ndim=1, shape=[31], strides=(srcsize,),
 | |
|                             lst=lst, cast=True)
 | |
| 
 | |
|         # cast from ndim = 0 to ndim = 1
 | |
|         srcsize = struct.calcsize('I')
 | |
|         ex = ndarray(9, shape=[], format='I')
 | |
|         destitems, destshape = cast_items(ex, 'B', 1)
 | |
|         m = memoryview(ex)
 | |
|         m2 = m.cast('B')
 | |
|         self.verify(m2, obj=ex,
 | |
|                     itemsize=1, fmt='B', readonly=True,
 | |
|                     ndim=1, shape=destshape, strides=(1,),
 | |
|                     lst=destitems, cast=True)
 | |
| 
 | |
|         # cast from ndim = 1 to ndim = 0
 | |
|         destsize = struct.calcsize('I')
 | |
|         ex = ndarray([9]*destsize, shape=[destsize], format='B')
 | |
|         destitems, destshape = cast_items(ex, 'I', destsize, shape=[])
 | |
|         m = memoryview(ex)
 | |
|         m2 = m.cast('I', shape=[])
 | |
|         self.verify(m2, obj=ex,
 | |
|                     itemsize=destsize, fmt='I', readonly=True,
 | |
|                     ndim=0, shape=(), strides=(),
 | |
|                     lst=destitems, cast=True)
 | |
| 
 | |
|         # array.array: roundtrip to/from bytes
 | |
|         for fmt, items, _ in iter_format(31, 'array'):
 | |
|             ex = array.array(fmt, items)
 | |
|             m = memoryview(ex)
 | |
|             iter_roundtrip(ex, m, items, fmt)
 | |
| 
 | |
|         # ndarray: roundtrip to/from bytes
 | |
|         for fmt, items, _ in iter_format(31, 'memoryview'):
 | |
|             ex = ndarray(items, shape=[31], format=fmt, flags=ND_WRITABLE)
 | |
|             m = memoryview(ex)
 | |
|             iter_roundtrip(ex, m, items, fmt)
 | |
| 
 | |
|     def test_memoryview_cast_1D_ND(self):
 | |
|         # Cast between C-contiguous buffers. At least one buffer must
 | |
|         # be 1D, at least one format must be 'c', 'b' or 'B'.
 | |
|         for _tshape in gencastshapes():
 | |
|             for char in fmtdict['@']:
 | |
|                 # Casts to _Bool are undefined if the source contains values
 | |
|                 # other than 0 or 1.
 | |
|                 if char == "?":
 | |
|                     continue
 | |
|                 tfmt = ('', '@')[randrange(2)] + char
 | |
|                 tsize = struct.calcsize(tfmt)
 | |
|                 n = prod(_tshape) * tsize
 | |
|                 obj = 'memoryview' if is_byte_format(tfmt) else 'bytefmt'
 | |
|                 for fmt, items, _ in iter_format(n, obj):
 | |
|                     size = struct.calcsize(fmt)
 | |
|                     shape = [n] if n > 0 else []
 | |
|                     tshape = _tshape + [size]
 | |
| 
 | |
|                     ex = ndarray(items, shape=shape, format=fmt)
 | |
|                     m = memoryview(ex)
 | |
| 
 | |
|                     titems, tshape = cast_items(ex, tfmt, tsize, shape=tshape)
 | |
| 
 | |
|                     if titems is None:
 | |
|                         self.assertRaises(TypeError, m.cast, tfmt, tshape)
 | |
|                         continue
 | |
|                     if titems == 'nan':
 | |
|                         continue # NaNs in lists are a recipe for trouble.
 | |
| 
 | |
|                     # 1D -> ND
 | |
|                     nd = ndarray(titems, shape=tshape, format=tfmt)
 | |
| 
 | |
|                     m2 = m.cast(tfmt, shape=tshape)
 | |
|                     ndim = len(tshape)
 | |
|                     strides = nd.strides
 | |
|                     lst = nd.tolist()
 | |
|                     self.verify(m2, obj=ex,
 | |
|                                 itemsize=tsize, fmt=tfmt, readonly=True,
 | |
|                                 ndim=ndim, shape=tshape, strides=strides,
 | |
|                                 lst=lst, cast=True)
 | |
| 
 | |
|                     # ND -> 1D
 | |
|                     m3 = m2.cast(fmt)
 | |
|                     m4 = m2.cast(fmt, shape=shape)
 | |
|                     ndim = len(shape)
 | |
|                     strides = ex.strides
 | |
|                     lst = ex.tolist()
 | |
| 
 | |
|                     self.verify(m3, obj=ex,
 | |
|                                 itemsize=size, fmt=fmt, readonly=True,
 | |
|                                 ndim=ndim, shape=shape, strides=strides,
 | |
|                                 lst=lst, cast=True)
 | |
| 
 | |
|                     self.verify(m4, obj=ex,
 | |
|                                 itemsize=size, fmt=fmt, readonly=True,
 | |
|                                 ndim=ndim, shape=shape, strides=strides,
 | |
|                                 lst=lst, cast=True)
 | |
| 
 | |
|         if ctypes:
 | |
|             # format: "T{>l:x:>d:y:}"
 | |
|             class BEPoint(ctypes.BigEndianStructure):
 | |
|                 _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_double)]
 | |
|             point = BEPoint(100, 200.1)
 | |
|             m1 = memoryview(point)
 | |
|             m2 = m1.cast('B')
 | |
|             self.assertEqual(m2.obj, point)
 | |
|             self.assertEqual(m2.itemsize, 1)
 | |
|             self.assertIs(m2.readonly, False)
 | |
|             self.assertEqual(m2.ndim, 1)
 | |
|             self.assertEqual(m2.shape, (m2.nbytes,))
 | |
|             self.assertEqual(m2.strides, (1,))
 | |
|             self.assertEqual(m2.suboffsets, ())
 | |
| 
 | |
|             x = ctypes.c_double(1.2)
 | |
|             m1 = memoryview(x)
 | |
|             m2 = m1.cast('c')
 | |
|             self.assertEqual(m2.obj, x)
 | |
|             self.assertEqual(m2.itemsize, 1)
 | |
|             self.assertIs(m2.readonly, False)
 | |
|             self.assertEqual(m2.ndim, 1)
 | |
|             self.assertEqual(m2.shape, (m2.nbytes,))
 | |
|             self.assertEqual(m2.strides, (1,))
 | |
|             self.assertEqual(m2.suboffsets, ())
 | |
| 
 | |
|     def test_memoryview_tolist(self):
 | |
| 
 | |
|         # Most tolist() tests are in self.verify() etc.
 | |
| 
 | |
|         a = array.array('h', list(range(-6, 6)))
 | |
|         m = memoryview(a)
 | |
|         self.assertEqual(m, a)
 | |
|         self.assertEqual(m.tolist(), a.tolist())
 | |
| 
 | |
|         a = a[2::3]
 | |
|         m = m[2::3]
 | |
|         self.assertEqual(m, a)
 | |
|         self.assertEqual(m.tolist(), a.tolist())
 | |
| 
 | |
|         ex = ndarray(list(range(2*3*5*7*11)), shape=[11,2,7,3,5], format='L')
 | |
|         m = memoryview(ex)
 | |
|         self.assertEqual(m.tolist(), ex.tolist())
 | |
| 
 | |
|         ex = ndarray([(2, 5), (7, 11)], shape=[2], format='lh')
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.tolist)
 | |
| 
 | |
|         ex = ndarray([b'12345'], shape=[1], format="s")
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.tolist)
 | |
| 
 | |
|         ex = ndarray([b"a",b"b",b"c",b"d",b"e",b"f"], shape=[2,3], format='s')
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.tolist)
 | |
| 
 | |
|     def test_memoryview_repr(self):
 | |
|         m = memoryview(bytearray(9))
 | |
|         r = m.__repr__()
 | |
|         self.assertTrue(r.startswith("<memory"))
 | |
| 
 | |
|         m.release()
 | |
|         r = m.__repr__()
 | |
|         self.assertTrue(r.startswith("<released"))
 | |
| 
 | |
|     def test_memoryview_sequence(self):
 | |
| 
 | |
|         for fmt in ('d', 'f'):
 | |
|             inf = float(3e400)
 | |
|             ex = array.array(fmt, [1.0, inf, 3.0])
 | |
|             m = memoryview(ex)
 | |
|             self.assertIn(1.0, m)
 | |
|             self.assertIn(5e700, m)
 | |
|             self.assertIn(3.0, m)
 | |
| 
 | |
|         ex = ndarray(9.0, [], format='f')
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, eval, "9.0 in m", locals())
 | |
| 
 | |
|     @contextlib.contextmanager
 | |
|     def assert_out_of_bounds_error(self, dim):
 | |
|         with self.assertRaises(IndexError) as cm:
 | |
|             yield
 | |
|         self.assertEqual(str(cm.exception),
 | |
|                          "index out of bounds on dimension %d" % (dim,))
 | |
| 
 | |
|     def test_memoryview_index(self):
 | |
| 
 | |
|         # ndim = 0
 | |
|         ex = ndarray(12.5, shape=[], format='d')
 | |
|         m = memoryview(ex)
 | |
|         self.assertEqual(m[()], 12.5)
 | |
|         self.assertEqual(m[...], m)
 | |
|         self.assertEqual(m[...], ex)
 | |
|         self.assertRaises(TypeError, m.__getitem__, 0)
 | |
| 
 | |
|         ex = ndarray((1,2,3), shape=[], format='iii')
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__, ())
 | |
| 
 | |
|         # range
 | |
|         ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         self.assertRaises(IndexError, m.__getitem__, 2**64)
 | |
|         self.assertRaises(TypeError, m.__getitem__, 2.0)
 | |
|         self.assertRaises(TypeError, m.__getitem__, 0.0)
 | |
| 
 | |
|         # out of bounds
 | |
|         self.assertRaises(IndexError, m.__getitem__, -8)
 | |
|         self.assertRaises(IndexError, m.__getitem__, 8)
 | |
| 
 | |
|         # multi-dimensional
 | |
|         ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         self.assertEqual(m[0, 0], 0)
 | |
|         self.assertEqual(m[2, 0], 8)
 | |
|         self.assertEqual(m[2, 3], 11)
 | |
|         self.assertEqual(m[-1, -1], 11)
 | |
|         self.assertEqual(m[-3, -4], 0)
 | |
| 
 | |
|         # out of bounds
 | |
|         for index in (3, -4):
 | |
|             with self.assert_out_of_bounds_error(dim=1):
 | |
|                 m[index, 0]
 | |
|         for index in (4, -5):
 | |
|             with self.assert_out_of_bounds_error(dim=2):
 | |
|                 m[0, index]
 | |
|         self.assertRaises(IndexError, m.__getitem__, (2**64, 0))
 | |
|         self.assertRaises(IndexError, m.__getitem__, (0, 2**64))
 | |
| 
 | |
|         self.assertRaises(TypeError, m.__getitem__, (0, 0, 0))
 | |
|         self.assertRaises(TypeError, m.__getitem__, (0.0, 0.0))
 | |
| 
 | |
|         # Not implemented: multidimensional sub-views
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__, ())
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__, 0)
 | |
| 
 | |
|     def test_memoryview_assign(self):
 | |
| 
 | |
|         # ndim = 0
 | |
|         ex = ndarray(12.5, shape=[], format='f', flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         m[()] = 22.5
 | |
|         self.assertEqual(m[()], 22.5)
 | |
|         m[...] = 23.5
 | |
|         self.assertEqual(m[()], 23.5)
 | |
|         self.assertRaises(TypeError, m.__setitem__, 0, 24.7)
 | |
| 
 | |
|         # read-only
 | |
|         ex = ndarray(list(range(7)), shape=[7])
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(TypeError, m.__setitem__, 2, 10)
 | |
| 
 | |
|         # range
 | |
|         ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         self.assertRaises(IndexError, m.__setitem__, 2**64, 9)
 | |
|         self.assertRaises(TypeError, m.__setitem__, 2.0, 10)
 | |
|         self.assertRaises(TypeError, m.__setitem__, 0.0, 11)
 | |
| 
 | |
|         # out of bounds
 | |
|         self.assertRaises(IndexError, m.__setitem__, -8, 20)
 | |
|         self.assertRaises(IndexError, m.__setitem__, 8, 25)
 | |
| 
 | |
|         # pack_single() success:
 | |
|         for fmt in fmtdict['@']:
 | |
|             if fmt == 'c' or fmt == '?':
 | |
|                 continue
 | |
|             ex = ndarray([1,2,3], shape=[3], format=fmt, flags=ND_WRITABLE)
 | |
|             m = memoryview(ex)
 | |
|             i = randrange(-3, 3)
 | |
|             m[i] = 8
 | |
|             self.assertEqual(m[i], 8)
 | |
|             self.assertEqual(m[i], ex[i])
 | |
| 
 | |
|         ex = ndarray([b'1', b'2', b'3'], shape=[3], format='c',
 | |
|                      flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         m[2] = b'9'
 | |
|         self.assertEqual(m[2], b'9')
 | |
| 
 | |
|         ex = ndarray([True, False, True], shape=[3], format='?',
 | |
|                      flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         m[1] = True
 | |
|         self.assertIs(m[1], True)
 | |
| 
 | |
|         # pack_single() exceptions:
 | |
|         nd = ndarray([b'x'], shape=[1], format='c', flags=ND_WRITABLE)
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(TypeError, m.__setitem__, 0, 100)
 | |
| 
 | |
|         ex = ndarray(list(range(120)), shape=[1,2,3,4,5], flags=ND_WRITABLE)
 | |
|         m1 = memoryview(ex)
 | |
| 
 | |
|         for fmt, _range in fmtdict['@'].items():
 | |
|             if (fmt == '?'): # PyObject_IsTrue() accepts anything
 | |
|                 continue
 | |
|             if fmt == 'c': # special case tested above
 | |
|                 continue
 | |
|             m2 = m1.cast(fmt)
 | |
|             lo, hi = _range
 | |
|             if fmt == 'd' or fmt == 'f':
 | |
|                 lo, hi = -2**1024, 2**1024
 | |
|             if fmt != 'P': # PyLong_AsVoidPtr() accepts negative numbers
 | |
|                 self.assertRaises(ValueError, m2.__setitem__, 0, lo-1)
 | |
|                 self.assertRaises(TypeError, m2.__setitem__, 0, "xyz")
 | |
|             self.assertRaises(ValueError, m2.__setitem__, 0, hi)
 | |
| 
 | |
|         # invalid item
 | |
|         m2 = m1.cast('c')
 | |
|         self.assertRaises(ValueError, m2.__setitem__, 0, b'\xff\xff')
 | |
| 
 | |
|         # format not implemented
 | |
|         ex = ndarray(list(range(1)), shape=[1], format="xL", flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
 | |
| 
 | |
|         ex = ndarray([b'12345'], shape=[1], format="s", flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
 | |
| 
 | |
|         # multi-dimensional
 | |
|         ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
|         m[0,1] = 42
 | |
|         self.assertEqual(ex[0][1], 42)
 | |
|         m[-1,-1] = 43
 | |
|         self.assertEqual(ex[2][3], 43)
 | |
|         # errors
 | |
|         for index in (3, -4):
 | |
|             with self.assert_out_of_bounds_error(dim=1):
 | |
|                 m[index, 0] = 0
 | |
|         for index in (4, -5):
 | |
|             with self.assert_out_of_bounds_error(dim=2):
 | |
|                 m[0, index] = 0
 | |
|         self.assertRaises(IndexError, m.__setitem__, (2**64, 0), 0)
 | |
|         self.assertRaises(IndexError, m.__setitem__, (0, 2**64), 0)
 | |
| 
 | |
|         self.assertRaises(TypeError, m.__setitem__, (0, 0, 0), 0)
 | |
|         self.assertRaises(TypeError, m.__setitem__, (0.0, 0.0), 0)
 | |
| 
 | |
|         # Not implemented: multidimensional sub-views
 | |
|         self.assertRaises(NotImplementedError, m.__setitem__, 0, [2, 3])
 | |
| 
 | |
|     def test_memoryview_slice(self):
 | |
| 
 | |
|         ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         # zero step
 | |
|         self.assertRaises(ValueError, m.__getitem__, slice(0,2,0))
 | |
|         self.assertRaises(ValueError, m.__setitem__, slice(0,2,0),
 | |
|                           bytearray([1,2]))
 | |
| 
 | |
|         # 0-dim slicing (identity function)
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__, ())
 | |
| 
 | |
|         # multidimensional slices
 | |
|         ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         self.assertRaises(NotImplementedError, m.__getitem__,
 | |
|                           (slice(0,2,1), slice(0,2,1)))
 | |
|         self.assertRaises(NotImplementedError, m.__setitem__,
 | |
|                           (slice(0,2,1), slice(0,2,1)), bytearray([1,2]))
 | |
| 
 | |
|         # invalid slice tuple
 | |
|         self.assertRaises(TypeError, m.__getitem__, (slice(0,2,1), {}))
 | |
|         self.assertRaises(TypeError, m.__setitem__, (slice(0,2,1), {}),
 | |
|                           bytearray([1,2]))
 | |
| 
 | |
|         # rvalue is not an exporter
 | |
|         self.assertRaises(TypeError, m.__setitem__, slice(0,1,1), [1])
 | |
| 
 | |
|         # non-contiguous slice assignment
 | |
|         for flags in (0, ND_PIL):
 | |
|             ex1 = ndarray(list(range(12)), shape=[12], strides=[-1], offset=11,
 | |
|                           flags=ND_WRITABLE|flags)
 | |
|             ex2 = ndarray(list(range(24)), shape=[12], strides=[2], flags=flags)
 | |
|             m1 = memoryview(ex1)
 | |
|             m2 = memoryview(ex2)
 | |
| 
 | |
|             ex1[2:5] = ex1[2:5]
 | |
|             m1[2:5] = m2[2:5]
 | |
| 
 | |
|             self.assertEqual(m1, ex1)
 | |
|             self.assertEqual(m2, ex2)
 | |
| 
 | |
|             ex1[1:3][::-1] = ex2[0:2][::1]
 | |
|             m1[1:3][::-1] = m2[0:2][::1]
 | |
| 
 | |
|             self.assertEqual(m1, ex1)
 | |
|             self.assertEqual(m2, ex2)
 | |
| 
 | |
|             ex1[4:1:-2][::-1] = ex1[1:4:2][::1]
 | |
|             m1[4:1:-2][::-1] = m1[1:4:2][::1]
 | |
| 
 | |
|             self.assertEqual(m1, ex1)
 | |
|             self.assertEqual(m2, ex2)
 | |
| 
 | |
|     def test_memoryview_array(self):
 | |
| 
 | |
|         def cmptest(testcase, a, b, m, singleitem):
 | |
|             for i, _ in enumerate(a):
 | |
|                 ai = a[i]
 | |
|                 mi = m[i]
 | |
|                 testcase.assertEqual(ai, mi)
 | |
|                 a[i] = singleitem
 | |
|                 if singleitem != ai:
 | |
|                     testcase.assertNotEqual(a, m)
 | |
|                     testcase.assertNotEqual(a, b)
 | |
|                 else:
 | |
|                     testcase.assertEqual(a, m)
 | |
|                     testcase.assertEqual(a, b)
 | |
|                 m[i] = singleitem
 | |
|                 testcase.assertEqual(a, m)
 | |
|                 testcase.assertEqual(b, m)
 | |
|                 a[i] = ai
 | |
|                 m[i] = mi
 | |
| 
 | |
|         for n in range(1, 5):
 | |
|             for fmt, items, singleitem in iter_format(n, 'array'):
 | |
|                 for lslice in genslices(n):
 | |
|                     for rslice in genslices(n):
 | |
| 
 | |
|                         a = array.array(fmt, items)
 | |
|                         b = array.array(fmt, items)
 | |
|                         m = memoryview(b)
 | |
| 
 | |
|                         self.assertEqual(m, a)
 | |
|                         self.assertEqual(m.tolist(), a.tolist())
 | |
|                         self.assertEqual(m.tobytes(), a.tobytes())
 | |
|                         self.assertEqual(len(m), len(a))
 | |
| 
 | |
|                         cmptest(self, a, b, m, singleitem)
 | |
| 
 | |
|                         array_err = None
 | |
|                         have_resize = None
 | |
|                         try:
 | |
|                             al = a[lslice]
 | |
|                             ar = a[rslice]
 | |
|                             a[lslice] = a[rslice]
 | |
|                             have_resize = len(al) != len(ar)
 | |
|                         except Exception as e:
 | |
|                             array_err = e.__class__
 | |
| 
 | |
|                         m_err = None
 | |
|                         try:
 | |
|                             m[lslice] = m[rslice]
 | |
|                         except Exception as e:
 | |
|                             m_err = e.__class__
 | |
| 
 | |
|                         if have_resize: # memoryview cannot change shape
 | |
|                             self.assertIs(m_err, ValueError)
 | |
|                         elif m_err or array_err:
 | |
|                             self.assertIs(m_err, array_err)
 | |
|                         else:
 | |
|                             self.assertEqual(m, a)
 | |
|                             self.assertEqual(m.tolist(), a.tolist())
 | |
|                             self.assertEqual(m.tobytes(), a.tobytes())
 | |
|                             cmptest(self, a, b, m, singleitem)
 | |
| 
 | |
|     def test_memoryview_compare_special_cases(self):
 | |
| 
 | |
|         a = array.array('L', [1, 2, 3])
 | |
|         b = array.array('L', [1, 2, 7])
 | |
| 
 | |
|         # Ordering comparisons raise:
 | |
|         v = memoryview(a)
 | |
|         w = memoryview(b)
 | |
|         for attr in ('__lt__', '__le__', '__gt__', '__ge__'):
 | |
|             self.assertIs(getattr(v, attr)(w), NotImplemented)
 | |
|             self.assertIs(getattr(a, attr)(v), NotImplemented)
 | |
| 
 | |
|         # Released views compare equal to themselves:
 | |
|         v = memoryview(a)
 | |
|         v.release()
 | |
|         self.assertEqual(v, v)
 | |
|         self.assertNotEqual(v, a)
 | |
|         self.assertNotEqual(a, v)
 | |
| 
 | |
|         v = memoryview(a)
 | |
|         w = memoryview(a)
 | |
|         w.release()
 | |
|         self.assertNotEqual(v, w)
 | |
|         self.assertNotEqual(w, v)
 | |
| 
 | |
|         # Operand does not implement the buffer protocol:
 | |
|         v = memoryview(a)
 | |
|         self.assertNotEqual(v, [1, 2, 3])
 | |
| 
 | |
|         # NaNs
 | |
|         nd = ndarray([(0, 0)], shape=[1], format='l x d x', flags=ND_WRITABLE)
 | |
|         nd[0] = (-1, float('nan'))
 | |
|         self.assertNotEqual(memoryview(nd), nd)
 | |
| 
 | |
|         # Depends on issue #15625: the struct module does not understand 'u'.
 | |
|         a = array.array('u', 'xyz')
 | |
|         v = memoryview(a)
 | |
|         self.assertNotEqual(a, v)
 | |
|         self.assertNotEqual(v, a)
 | |
| 
 | |
|         # Some ctypes format strings are unknown to the struct module.
 | |
|         if ctypes:
 | |
|             # format: "T{>l:x:>l:y:}"
 | |
|             class BEPoint(ctypes.BigEndianStructure):
 | |
|                 _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)]
 | |
|             point = BEPoint(100, 200)
 | |
|             a = memoryview(point)
 | |
|             b = memoryview(point)
 | |
|             self.assertNotEqual(a, b)
 | |
|             self.assertNotEqual(a, point)
 | |
|             self.assertNotEqual(point, a)
 | |
|             self.assertRaises(NotImplementedError, a.tolist)
 | |
| 
 | |
|     def test_memoryview_compare_ndim_zero(self):
 | |
| 
 | |
|         nd1 = ndarray(1729, shape=[], format='@L')
 | |
|         nd2 = ndarray(1729, shape=[], format='L', flags=ND_WRITABLE)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
|         self.assertEqual(v, w)
 | |
|         self.assertEqual(w, v)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(nd2, v)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(nd1, w)
 | |
| 
 | |
|         self.assertFalse(v.__ne__(w))
 | |
|         self.assertFalse(w.__ne__(v))
 | |
| 
 | |
|         w[()] = 1728
 | |
|         self.assertNotEqual(v, w)
 | |
|         self.assertNotEqual(w, v)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(nd2, v)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(nd1, w)
 | |
| 
 | |
|         self.assertFalse(v.__eq__(w))
 | |
|         self.assertFalse(w.__eq__(v))
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
 | |
|         ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
 | |
|         m = memoryview(ex)
 | |
| 
 | |
|         self.assertEqual(m, nd)
 | |
|         m[9] = 100
 | |
|         self.assertNotEqual(m, nd)
 | |
| 
 | |
|         # struct module: equal
 | |
|         nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s')
 | |
|         nd2 = ndarray((1729, 1.2, b'12345'), shape=[], format='hf5s',
 | |
|                       flags=ND_WRITABLE)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
|         self.assertEqual(v, w)
 | |
|         self.assertEqual(w, v)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(nd2, v)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(nd1, w)
 | |
| 
 | |
|         # struct module: not equal
 | |
|         nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s')
 | |
|         nd2 = ndarray((-1729, 1.2, b'12345'), shape=[], format='hf5s',
 | |
|                       flags=ND_WRITABLE)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
|         self.assertNotEqual(v, w)
 | |
|         self.assertNotEqual(w, v)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(nd2, v)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(nd1, w)
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
| 
 | |
|     def test_memoryview_compare_ndim_one(self):
 | |
| 
 | |
|         # contiguous
 | |
|         nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='@h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # contiguous, struct module
 | |
|         nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<i')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='>h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # non-contiguous
 | |
|         nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd2[::2])
 | |
|         self.assertEqual(w[::2], nd1)
 | |
|         self.assertEqual(v, w[::2])
 | |
|         self.assertEqual(v[::-1], w[::-2])
 | |
| 
 | |
|         # non-contiguous, struct module
 | |
|         nd1 = ndarray([-529, -625, -729], shape=[3], format='!h')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<l')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd2[::2])
 | |
|         self.assertEqual(w[::2], nd1)
 | |
|         self.assertEqual(v, w[::2])
 | |
|         self.assertEqual(v[::-1], w[::-2])
 | |
| 
 | |
|         # non-contiguous, suboffsets
 | |
|         nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h',
 | |
|                       flags=ND_PIL)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd2[::2])
 | |
|         self.assertEqual(w[::2], nd1)
 | |
|         self.assertEqual(v, w[::2])
 | |
|         self.assertEqual(v[::-1], w[::-2])
 | |
| 
 | |
|         # non-contiguous, suboffsets, struct module
 | |
|         nd1 = ndarray([-529, -625, -729], shape=[3], format='h  0c')
 | |
|         nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='>  h',
 | |
|                       flags=ND_PIL)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd2[::2])
 | |
|         self.assertEqual(w[::2], nd1)
 | |
|         self.assertEqual(v, w[::2])
 | |
|         self.assertEqual(v[::-1], w[::-2])
 | |
| 
 | |
|     def test_memoryview_compare_zero_shape(self):
 | |
| 
 | |
|         # zeros in shape
 | |
|         nd1 = ndarray([900, 961], shape=[0], format='@h')
 | |
|         nd2 = ndarray([-900, -961], shape=[0], format='@h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # zeros in shape, struct module
 | |
|         nd1 = ndarray([900, 961], shape=[0], format='= h0c')
 | |
|         nd2 = ndarray([-900, -961], shape=[0], format='@   i')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_zero_strides(self):
 | |
| 
 | |
|         # zero strides
 | |
|         nd1 = ndarray([900, 900, 900, 900], shape=[4], format='@L')
 | |
|         nd2 = ndarray([900], shape=[4], strides=[0], format='L')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # zero strides, struct module
 | |
|         nd1 = ndarray([(900, 900)]*4, shape=[4], format='@ Li')
 | |
|         nd2 = ndarray([(900, 900)], shape=[4], strides=[0], format='!L  h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_random_formats(self):
 | |
| 
 | |
|         # random single character native formats
 | |
|         n = 10
 | |
|         for char in fmtdict['@m']:
 | |
|             fmt, items, singleitem = randitems(n, 'memoryview', '@', char)
 | |
|             for flags in (0, ND_PIL):
 | |
|                 nd = ndarray(items, shape=[n], format=fmt, flags=flags)
 | |
|                 m = memoryview(nd)
 | |
|                 self.assertEqual(m, nd)
 | |
| 
 | |
|                 nd = nd[::-3]
 | |
|                 m = memoryview(nd)
 | |
|                 self.assertEqual(m, nd)
 | |
| 
 | |
|         # random formats
 | |
|         n = 10
 | |
|         for _ in range(100):
 | |
|             fmt, items, singleitem = randitems(n)
 | |
|             for flags in (0, ND_PIL):
 | |
|                 nd = ndarray(items, shape=[n], format=fmt, flags=flags)
 | |
|                 m = memoryview(nd)
 | |
|                 self.assertEqual(m, nd)
 | |
| 
 | |
|                 nd = nd[::-3]
 | |
|                 m = memoryview(nd)
 | |
|                 self.assertEqual(m, nd)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_c(self):
 | |
| 
 | |
|         # C-contiguous, different values
 | |
|         nd1 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='@h')
 | |
|         nd2 = ndarray(list(range(0, 30)), shape=[3, 2, 5], format='@h')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # C-contiguous, different values, struct module
 | |
|         nd1 = ndarray([(0, 1, 2)]*30, shape=[3, 2, 5], format='=f q xxL')
 | |
|         nd2 = ndarray([(-1.2, 1, 2)]*30, shape=[3, 2, 5], format='< f 2Q')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # C-contiguous, different shape
 | |
|         nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
 | |
|         nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='L')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # C-contiguous, different shape, struct module
 | |
|         nd1 = ndarray([(0, 1, 2)]*21, shape=[3, 7], format='! b B xL')
 | |
|         nd2 = ndarray([(0, 1, 2)]*21, shape=[7, 3], format='= Qx l xxL')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # C-contiguous, different format, struct module
 | |
|         nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
 | |
|         nd2 = ndarray(list(range(30)), shape=[2, 3, 5], format='l')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_fortran(self):
 | |
| 
 | |
|         # Fortran-contiguous, different values
 | |
|         nd1 = ndarray(list(range(-15, 15)), shape=[5, 2, 3], format='@h',
 | |
|                       flags=ND_FORTRAN)
 | |
|         nd2 = ndarray(list(range(0, 30)), shape=[5, 2, 3], format='@h',
 | |
|                       flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # Fortran-contiguous, different values, struct module
 | |
|         nd1 = ndarray([(2**64-1, -1)]*6, shape=[2, 3], format='=Qq',
 | |
|                       flags=ND_FORTRAN)
 | |
|         nd2 = ndarray([(-1, 2**64-1)]*6, shape=[2, 3], format='=qQ',
 | |
|                       flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # Fortran-contiguous, different shape
 | |
|         nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='l',
 | |
|                       flags=ND_FORTRAN)
 | |
|         nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l',
 | |
|                       flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # Fortran-contiguous, different shape, struct module
 | |
|         nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='0ll',
 | |
|                       flags=ND_FORTRAN)
 | |
|         nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l',
 | |
|                       flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # Fortran-contiguous, different format, struct module
 | |
|         nd1 = ndarray(list(range(30)), shape=[5, 2, 3], format='@h',
 | |
|                       flags=ND_FORTRAN)
 | |
|         nd2 = ndarray(list(range(30)), shape=[5, 2, 3], format='@b',
 | |
|                       flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_mixed(self):
 | |
| 
 | |
|         # mixed C/Fortran contiguous
 | |
|         lst1 = list(range(-15, 15))
 | |
|         lst2 = transpose(lst1, [3, 2, 5])
 | |
|         nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l')
 | |
|         nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # mixed C/Fortran contiguous, struct module
 | |
|         lst1 = [(-3.3, -22, b'x')]*30
 | |
|         lst1[5] = (-2.2, -22, b'x')
 | |
|         lst2 = transpose(lst1, [3, 2, 5])
 | |
|         nd1 = ndarray(lst1, shape=[3, 2, 5], format='d b c')
 | |
|         nd2 = ndarray(lst2, shape=[3, 2, 5], format='d h c', flags=ND_FORTRAN)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # different values, non-contiguous
 | |
|         ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
 | |
|         nd1 = ex1[3:1:-1, ::-2]
 | |
|         ex2 = ndarray(list(range(40)), shape=[5, 8], format='I')
 | |
|         nd2 = ex2[1:3:1, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # same values, non-contiguous, struct module
 | |
|         ex1 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='=ii')
 | |
|         nd1 = ex1[3:1:-1, ::-2]
 | |
|         ex2 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='>ii')
 | |
|         nd2 = ex2[1:3:1, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # different shape
 | |
|         ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b')
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
|         nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # different shape, struct module
 | |
|         ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='B')
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
|         nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # different format, struct module
 | |
|         ex1 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='b3s')
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
|         nd2 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='i3s')
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_zero_shape(self):
 | |
| 
 | |
|         # zeros in shape
 | |
|         nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i')
 | |
|         nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # zeros in shape, struct module
 | |
|         nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i')
 | |
|         nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_zero_strides(self):
 | |
| 
 | |
|         # zero strides
 | |
|         nd1 = ndarray([900]*80, shape=[4, 5, 4], format='@L')
 | |
|         nd2 = ndarray([900], shape=[4, 5, 4], strides=[0, 0, 0], format='L')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
|         self.assertEqual(v.tolist(), w.tolist())
 | |
| 
 | |
|         # zero strides, struct module
 | |
|         nd1 = ndarray([(1, 2)]*10, shape=[2, 5], format='=lQ')
 | |
|         nd2 = ndarray([(1, 2)], shape=[2, 5], strides=[0, 0], format='<lQ')
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_multidim_suboffsets(self):
 | |
| 
 | |
|         # suboffsets
 | |
|         ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
 | |
|         nd1 = ex1[3:1:-1, ::-2]
 | |
|         ex2 = ndarray(list(range(40)), shape=[5, 8], format='I', flags=ND_PIL)
 | |
|         nd2 = ex2[1:3:1, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # suboffsets, struct module
 | |
|         ex1 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='=Qq',
 | |
|                       flags=ND_WRITABLE)
 | |
|         ex1[2][7] = (1, -2)
 | |
|         nd1 = ex1[3:1:-1, ::-2]
 | |
| 
 | |
|         ex2 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='>Qq',
 | |
|                       flags=ND_PIL|ND_WRITABLE)
 | |
|         ex2[2][7] = (1, -2)
 | |
|         nd2 = ex2[1:3:1, ::-2]
 | |
| 
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # suboffsets, different shape
 | |
|         ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b',
 | |
|                       flags=ND_PIL)
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
|         nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # suboffsets, different shape, struct module
 | |
|         ex1 = ndarray([(2**8-1, -1)]*40, shape=[2, 3, 5], format='Bb',
 | |
|                       flags=ND_PIL|ND_WRITABLE)
 | |
|         nd1 = ex1[1:2:, ::-2]
 | |
| 
 | |
|         ex2 = ndarray([(2**8-1, -1)]*40, shape=[3, 2, 5], format='Bb')
 | |
|         nd2 = ex2[1:2:, ::-2]
 | |
| 
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # suboffsets, different format
 | |
|         ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i', flags=ND_PIL)
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
|         ex2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I', flags=ND_PIL)
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, nd2)
 | |
|         self.assertEqual(w, nd1)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # suboffsets, different format, struct module
 | |
|         ex1 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP',
 | |
|                       flags=ND_PIL|ND_WRITABLE)
 | |
|         ex1[1][2][2] = (b'sushi', b'', 1)
 | |
|         nd1 = ex1[1:3:, ::-2]
 | |
| 
 | |
|         ex2 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP',
 | |
|                       flags=ND_PIL|ND_WRITABLE)
 | |
|         ex1[1][2][2] = (b'sushi', b'', 1)
 | |
|         nd2 = ex2[1:3:, ::-2]
 | |
| 
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertNotEqual(v, nd2)
 | |
|         self.assertNotEqual(w, nd1)
 | |
|         self.assertNotEqual(v, w)
 | |
| 
 | |
|         # initialize mixed C/Fortran + suboffsets
 | |
|         lst1 = list(range(-15, 15))
 | |
|         lst2 = transpose(lst1, [3, 2, 5])
 | |
|         nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l', flags=ND_PIL)
 | |
|         nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN|ND_PIL)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|         # initialize mixed C/Fortran + suboffsets, struct module
 | |
|         lst1 = [(b'sashimi', b'sliced', 20.05)]*30
 | |
|         lst1[11] = (b'ramen', b'spicy', 9.45)
 | |
|         lst2 = transpose(lst1, [3, 2, 5])
 | |
| 
 | |
|         nd1 = ndarray(lst1, shape=[3, 2, 5], format='< 10p 9p d', flags=ND_PIL)
 | |
|         nd2 = ndarray(lst2, shape=[3, 2, 5], format='> 10p 9p d',
 | |
|                       flags=ND_FORTRAN|ND_PIL)
 | |
|         v = memoryview(nd1)
 | |
|         w = memoryview(nd2)
 | |
| 
 | |
|         self.assertEqual(v, nd1)
 | |
|         self.assertEqual(w, nd2)
 | |
|         self.assertEqual(v, w)
 | |
| 
 | |
|     def test_memoryview_compare_not_equal(self):
 | |
| 
 | |
|         # items not equal
 | |
|         for byteorder in ['=', '<', '>', '!']:
 | |
|             x = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q')
 | |
|             y = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q',
 | |
|                         flags=ND_WRITABLE|ND_FORTRAN)
 | |
|             y[2][3][1][1][1] = 1
 | |
|             a = memoryview(x)
 | |
|             b = memoryview(y)
 | |
|             self.assertEqual(a, x)
 | |
|             self.assertEqual(b, y)
 | |
|             self.assertNotEqual(a, b)
 | |
|             self.assertNotEqual(a, y)
 | |
|             self.assertNotEqual(b, x)
 | |
| 
 | |
|             x = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2],
 | |
|                         format=byteorder+'QLH')
 | |
|             y = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2],
 | |
|                         format=byteorder+'QLH', flags=ND_WRITABLE|ND_FORTRAN)
 | |
|             y[2][3][1][1][1] = (1, 1, 1)
 | |
|             a = memoryview(x)
 | |
|             b = memoryview(y)
 | |
|             self.assertEqual(a, x)
 | |
|             self.assertEqual(b, y)
 | |
|             self.assertNotEqual(a, b)
 | |
|             self.assertNotEqual(a, y)
 | |
|             self.assertNotEqual(b, x)
 | |
| 
 | |
|     def test_memoryview_check_released(self):
 | |
| 
 | |
|         a = array.array('d', [1.1, 2.2, 3.3])
 | |
| 
 | |
|         m = memoryview(a)
 | |
|         m.release()
 | |
| 
 | |
|         # PyMemoryView_FromObject()
 | |
|         self.assertRaises(ValueError, memoryview, m)
 | |
|         # memoryview.cast()
 | |
|         self.assertRaises(ValueError, m.cast, 'c')
 | |
|         # getbuffer()
 | |
|         self.assertRaises(ValueError, ndarray, m)
 | |
|         # memoryview.tolist()
 | |
|         self.assertRaises(ValueError, m.tolist)
 | |
|         # memoryview.tobytes()
 | |
|         self.assertRaises(ValueError, m.tobytes)
 | |
|         # sequence
 | |
|         self.assertRaises(ValueError, eval, "1.0 in m", locals())
 | |
|         # subscript
 | |
|         self.assertRaises(ValueError, m.__getitem__, 0)
 | |
|         # assignment
 | |
|         self.assertRaises(ValueError, m.__setitem__, 0, 1)
 | |
| 
 | |
|         for attr in ('obj', 'nbytes', 'readonly', 'itemsize', 'format', 'ndim',
 | |
|                      'shape', 'strides', 'suboffsets', 'c_contiguous',
 | |
|                      'f_contiguous', 'contiguous'):
 | |
|             self.assertRaises(ValueError, m.__getattribute__, attr)
 | |
| 
 | |
|         # richcompare
 | |
|         b = array.array('d', [1.1, 2.2, 3.3])
 | |
|         m1 = memoryview(a)
 | |
|         m2 = memoryview(b)
 | |
| 
 | |
|         self.assertEqual(m1, m2)
 | |
|         m1.release()
 | |
|         self.assertNotEqual(m1, m2)
 | |
|         self.assertNotEqual(m1, a)
 | |
|         self.assertEqual(m1, m1)
 | |
| 
 | |
|     def test_memoryview_tobytes(self):
 | |
|         # Many implicit tests are already in self.verify().
 | |
| 
 | |
|         t = (-529, 576, -625, 676, -729)
 | |
| 
 | |
|         nd = ndarray(t, shape=[5], format='@h')
 | |
|         m = memoryview(nd)
 | |
|         self.assertEqual(m, nd)
 | |
|         self.assertEqual(m.tobytes(), nd.tobytes())
 | |
| 
 | |
|         nd = ndarray([t], shape=[1], format='>hQiLl')
 | |
|         m = memoryview(nd)
 | |
|         self.assertEqual(m, nd)
 | |
|         self.assertEqual(m.tobytes(), nd.tobytes())
 | |
| 
 | |
|         nd = ndarray([t for _ in range(12)], shape=[2,2,3], format='=hQiLl')
 | |
|         m = memoryview(nd)
 | |
|         self.assertEqual(m, nd)
 | |
|         self.assertEqual(m.tobytes(), nd.tobytes())
 | |
| 
 | |
|         nd = ndarray([t for _ in range(120)], shape=[5,2,2,3,2],
 | |
|                      format='<hQiLl')
 | |
|         m = memoryview(nd)
 | |
|         self.assertEqual(m, nd)
 | |
|         self.assertEqual(m.tobytes(), nd.tobytes())
 | |
| 
 | |
|         # Unknown formats are handled: tobytes() purely depends on itemsize.
 | |
|         if ctypes:
 | |
|             # format: "T{>l:x:>l:y:}"
 | |
|             class BEPoint(ctypes.BigEndianStructure):
 | |
|                 _fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)]
 | |
|             point = BEPoint(100, 200)
 | |
|             a = memoryview(point)
 | |
|             self.assertEqual(a.tobytes(), bytes(point))
 | |
| 
 | |
|     def test_memoryview_get_contiguous(self):
 | |
|         # Many implicit tests are already in self.verify().
 | |
| 
 | |
|         # no buffer interface
 | |
|         self.assertRaises(TypeError, get_contiguous, {}, PyBUF_READ, 'F')
 | |
| 
 | |
|         # writable request to read-only object
 | |
|         self.assertRaises(BufferError, get_contiguous, b'x', PyBUF_WRITE, 'C')
 | |
| 
 | |
|         # writable request to non-contiguous object
 | |
|         nd = ndarray([1, 2, 3], shape=[2], strides=[2])
 | |
|         self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'A')
 | |
| 
 | |
|         # scalar, read-only request from read-only exporter
 | |
|         nd = ndarray(9, shape=(), format="L")
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m[()], 9)
 | |
| 
 | |
|         # scalar, read-only request from writable exporter
 | |
|         nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m[()], 9)
 | |
| 
 | |
|         # scalar, writable request
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             nd[()] = 9
 | |
|             m = get_contiguous(nd, PyBUF_WRITE, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m[()], 9)
 | |
| 
 | |
|             m[()] = 10
 | |
|             self.assertEqual(m[()], 10)
 | |
|             self.assertEqual(nd[()], 10)
 | |
| 
 | |
|         # zeros in shape
 | |
|         nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertRaises(IndexError, m.__getitem__, 0)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m.tolist(), [])
 | |
| 
 | |
|         nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L",
 | |
|                      flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(ndarray(m).tolist(), [[], []])
 | |
| 
 | |
|         # one-dimensional
 | |
|         nd = ndarray([1], shape=[1], format="h", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_WRITE, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m.tolist(), nd.tolist())
 | |
| 
 | |
|         nd = ndarray([1, 2, 3], shape=[3], format="b", flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_WRITE, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m.tolist(), nd.tolist())
 | |
| 
 | |
|         # one-dimensional, non-contiguous
 | |
|         nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m.tolist(), nd.tolist())
 | |
|             self.assertRaises(TypeError, m.__setitem__, 1, 20)
 | |
|             self.assertEqual(m[1], 3)
 | |
|             self.assertEqual(nd[1], 3)
 | |
| 
 | |
|         nd = nd[::-1]
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(m, nd)
 | |
|             self.assertEqual(m.tolist(), nd.tolist())
 | |
|             self.assertRaises(TypeError, m.__setitem__, 1, 20)
 | |
|             self.assertEqual(m[1], 1)
 | |
|             self.assertEqual(nd[1], 1)
 | |
| 
 | |
|         # multi-dimensional, contiguous input
 | |
|         nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE)
 | |
|         for order in ['C', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_WRITE, order)
 | |
|             self.assertEqual(ndarray(m).tolist(), nd.tolist())
 | |
| 
 | |
|         self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'F')
 | |
|         m = get_contiguous(nd, PyBUF_READ, order)
 | |
|         self.assertEqual(ndarray(m).tolist(), nd.tolist())
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[3, 4],
 | |
|                      flags=ND_WRITABLE|ND_FORTRAN)
 | |
|         for order in ['F', 'A']:
 | |
|             m = get_contiguous(nd, PyBUF_WRITE, order)
 | |
|             self.assertEqual(ndarray(m).tolist(), nd.tolist())
 | |
| 
 | |
|         self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'C')
 | |
|         m = get_contiguous(nd, PyBUF_READ, order)
 | |
|         self.assertEqual(ndarray(m).tolist(), nd.tolist())
 | |
| 
 | |
|         # multi-dimensional, non-contiguous input
 | |
|         nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL)
 | |
|         for order in ['C', 'F', 'A']:
 | |
|             self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE,
 | |
|                               order)
 | |
|             m = get_contiguous(nd, PyBUF_READ, order)
 | |
|             self.assertEqual(ndarray(m).tolist(), nd.tolist())
 | |
| 
 | |
|         # flags
 | |
|         nd = ndarray([1,2,3,4,5], shape=[3], strides=[2])
 | |
|         m = get_contiguous(nd, PyBUF_READ, 'C')
 | |
|         self.assertTrue(m.c_contiguous)
 | |
| 
 | |
|     def test_memoryview_serializing(self):
 | |
| 
 | |
|         # C-contiguous
 | |
|         size = struct.calcsize('i')
 | |
|         a = array.array('i', [1,2,3,4,5])
 | |
|         m = memoryview(a)
 | |
|         buf = io.BytesIO(m)
 | |
|         b = bytearray(5*size)
 | |
|         buf.readinto(b)
 | |
|         self.assertEqual(m.tobytes(), b)
 | |
| 
 | |
|         # C-contiguous, multi-dimensional
 | |
|         size = struct.calcsize('L')
 | |
|         nd = ndarray(list(range(12)), shape=[2,3,2], format="L")
 | |
|         m = memoryview(nd)
 | |
|         buf = io.BytesIO(m)
 | |
|         b = bytearray(2*3*2*size)
 | |
|         buf.readinto(b)
 | |
|         self.assertEqual(m.tobytes(), b)
 | |
| 
 | |
|         # Fortran contiguous, multi-dimensional
 | |
|         #size = struct.calcsize('L')
 | |
|         #nd = ndarray(list(range(12)), shape=[2,3,2], format="L",
 | |
|         #             flags=ND_FORTRAN)
 | |
|         #m = memoryview(nd)
 | |
|         #buf = io.BytesIO(m)
 | |
|         #b = bytearray(2*3*2*size)
 | |
|         #buf.readinto(b)
 | |
|         #self.assertEqual(m.tobytes(), b)
 | |
| 
 | |
|     def test_memoryview_hash(self):
 | |
| 
 | |
|         # bytes exporter
 | |
|         b = bytes(list(range(12)))
 | |
|         m = memoryview(b)
 | |
|         self.assertEqual(hash(b), hash(m))
 | |
| 
 | |
|         # C-contiguous
 | |
|         mc = m.cast('c', shape=[3,4])
 | |
|         self.assertEqual(hash(mc), hash(b))
 | |
| 
 | |
|         # non-contiguous
 | |
|         mx = m[::-2]
 | |
|         b = bytes(list(range(12))[::-2])
 | |
|         self.assertEqual(hash(mx), hash(b))
 | |
| 
 | |
|         # Fortran contiguous
 | |
|         nd = ndarray(list(range(30)), shape=[3,2,5], flags=ND_FORTRAN)
 | |
|         m = memoryview(nd)
 | |
|         self.assertEqual(hash(m), hash(nd))
 | |
| 
 | |
|         # multi-dimensional slice
 | |
|         nd = ndarray(list(range(30)), shape=[3,2,5])
 | |
|         x = nd[::2, ::, ::-1]
 | |
|         m = memoryview(x)
 | |
|         self.assertEqual(hash(m), hash(x))
 | |
| 
 | |
|         # multi-dimensional slice with suboffsets
 | |
|         nd = ndarray(list(range(30)), shape=[2,5,3], flags=ND_PIL)
 | |
|         x = nd[::2, ::, ::-1]
 | |
|         m = memoryview(x)
 | |
|         self.assertEqual(hash(m), hash(x))
 | |
| 
 | |
|         # equality-hash invariant
 | |
|         x = ndarray(list(range(12)), shape=[12], format='B')
 | |
|         a = memoryview(x)
 | |
| 
 | |
|         y = ndarray(list(range(12)), shape=[12], format='b')
 | |
|         b = memoryview(y)
 | |
| 
 | |
|         self.assertEqual(a, b)
 | |
|         self.assertEqual(hash(a), hash(b))
 | |
| 
 | |
|         # non-byte formats
 | |
|         nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(ValueError, m.__hash__)
 | |
| 
 | |
|         nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='h')
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(ValueError, m.__hash__)
 | |
| 
 | |
|         nd = ndarray(list(range(12)), shape=[2,2,3], format='= L')
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(ValueError, m.__hash__)
 | |
| 
 | |
|         nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='< h')
 | |
|         m = memoryview(nd)
 | |
|         self.assertRaises(ValueError, m.__hash__)
 | |
| 
 | |
|     def test_memoryview_release(self):
 | |
| 
 | |
|         # Create re-exporter from getbuffer(memoryview), then release the view.
 | |
|         a = bytearray([1,2,3])
 | |
|         m = memoryview(a)
 | |
|         nd = ndarray(m) # re-exporter
 | |
|         self.assertRaises(BufferError, m.release)
 | |
|         del nd
 | |
|         m.release()
 | |
| 
 | |
|         a = bytearray([1,2,3])
 | |
|         m = memoryview(a)
 | |
|         nd1 = ndarray(m, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         self.assertIs(nd2.obj, m)
 | |
|         self.assertRaises(BufferError, m.release)
 | |
|         del nd1, nd2
 | |
|         m.release()
 | |
| 
 | |
|         # chained views
 | |
|         a = bytearray([1,2,3])
 | |
|         m1 = memoryview(a)
 | |
|         m2 = memoryview(m1)
 | |
|         nd = ndarray(m2) # re-exporter
 | |
|         m1.release()
 | |
|         self.assertRaises(BufferError, m2.release)
 | |
|         del nd
 | |
|         m2.release()
 | |
| 
 | |
|         a = bytearray([1,2,3])
 | |
|         m1 = memoryview(a)
 | |
|         m2 = memoryview(m1)
 | |
|         nd1 = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         self.assertIs(nd2.obj, m2)
 | |
|         m1.release()
 | |
|         self.assertRaises(BufferError, m2.release)
 | |
|         del nd1, nd2
 | |
|         m2.release()
 | |
| 
 | |
|         # Allow changing layout while buffers are exported.
 | |
|         nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
 | |
|         m1 = memoryview(nd)
 | |
| 
 | |
|         nd.push([4,5,6,7,8], shape=[5]) # mutate nd
 | |
|         m2 = memoryview(nd)
 | |
| 
 | |
|         x = memoryview(m1)
 | |
|         self.assertEqual(x.tolist(), m1.tolist())
 | |
| 
 | |
|         y = memoryview(m2)
 | |
|         self.assertEqual(y.tolist(), m2.tolist())
 | |
|         self.assertEqual(y.tolist(), nd.tolist())
 | |
|         m2.release()
 | |
|         y.release()
 | |
| 
 | |
|         nd.pop() # pop the current view
 | |
|         self.assertEqual(x.tolist(), nd.tolist())
 | |
| 
 | |
|         del nd
 | |
|         m1.release()
 | |
|         x.release()
 | |
| 
 | |
|         # If multiple memoryviews share the same managed buffer, implicit
 | |
|         # release() in the context manager's __exit__() method should still
 | |
|         # work.
 | |
|         def catch22(b):
 | |
|             with memoryview(b) as m2:
 | |
|                 pass
 | |
| 
 | |
|         x = bytearray(b'123')
 | |
|         with memoryview(x) as m1:
 | |
|             catch22(m1)
 | |
|             self.assertEqual(m1[0], ord(b'1'))
 | |
| 
 | |
|         x = ndarray(list(range(12)), shape=[2,2,3], format='l')
 | |
|         y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         self.assertIs(z.obj, x)
 | |
|         with memoryview(z) as m:
 | |
|             catch22(m)
 | |
|             self.assertEqual(m[0:1].tolist(), [[[0, 1, 2], [3, 4, 5]]])
 | |
| 
 | |
|         # Test garbage collection.
 | |
|         for flags in (0, ND_REDIRECT):
 | |
|             x = bytearray(b'123')
 | |
|             with memoryview(x) as m1:
 | |
|                 del x
 | |
|                 y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags)
 | |
|                 with memoryview(y) as m2:
 | |
|                     del y
 | |
|                     z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags)
 | |
|                     with memoryview(z) as m3:
 | |
|                         del z
 | |
|                         catch22(m3)
 | |
|                         catch22(m2)
 | |
|                         catch22(m1)
 | |
|                         self.assertEqual(m1[0], ord(b'1'))
 | |
|                         self.assertEqual(m2[1], ord(b'2'))
 | |
|                         self.assertEqual(m3[2], ord(b'3'))
 | |
|                         del m3
 | |
|                     del m2
 | |
|                 del m1
 | |
| 
 | |
|             x = bytearray(b'123')
 | |
|             with memoryview(x) as m1:
 | |
|                 del x
 | |
|                 y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags)
 | |
|                 with memoryview(y) as m2:
 | |
|                     del y
 | |
|                     z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags)
 | |
|                     with memoryview(z) as m3:
 | |
|                         del z
 | |
|                         catch22(m1)
 | |
|                         catch22(m2)
 | |
|                         catch22(m3)
 | |
|                         self.assertEqual(m1[0], ord(b'1'))
 | |
|                         self.assertEqual(m2[1], ord(b'2'))
 | |
|                         self.assertEqual(m3[2], ord(b'3'))
 | |
|                         del m1, m2, m3
 | |
| 
 | |
|         # memoryview.release() fails if the view has exported buffers.
 | |
|         x = bytearray(b'123')
 | |
|         with self.assertRaises(BufferError):
 | |
|             with memoryview(x) as m:
 | |
|                 ex = ndarray(m)
 | |
|                 m[0] == ord(b'1')
 | |
| 
 | |
|     def test_memoryview_redirect(self):
 | |
| 
 | |
|         nd = ndarray([1.0 * x for x in range(12)], shape=[12], format='d')
 | |
|         a = array.array('d', [1.0 * x for x in range(12)])
 | |
| 
 | |
|         for x in (nd, a):
 | |
|             y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|             z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|             m = memoryview(z)
 | |
| 
 | |
|             self.assertIs(y.obj, x)
 | |
|             self.assertIs(z.obj, x)
 | |
|             self.assertIs(m.obj, x)
 | |
| 
 | |
|             self.assertEqual(m, x)
 | |
|             self.assertEqual(m, y)
 | |
|             self.assertEqual(m, z)
 | |
| 
 | |
|             self.assertEqual(m[1:3], x[1:3])
 | |
|             self.assertEqual(m[1:3], y[1:3])
 | |
|             self.assertEqual(m[1:3], z[1:3])
 | |
|             del y, z
 | |
|             self.assertEqual(m[1:3], x[1:3])
 | |
| 
 | |
|     def test_memoryview_from_static_exporter(self):
 | |
| 
 | |
|         fmt = 'B'
 | |
|         lst = [0,1,2,3,4,5,6,7,8,9,10,11]
 | |
| 
 | |
|         # exceptions
 | |
|         self.assertRaises(TypeError, staticarray, 1, 2, 3)
 | |
| 
 | |
|         # view.obj==x
 | |
|         x = staticarray()
 | |
|         y = memoryview(x)
 | |
|         self.verify(y, obj=x,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         for i in range(12):
 | |
|             self.assertEqual(y[i], i)
 | |
|         del x
 | |
|         del y
 | |
| 
 | |
|         x = staticarray()
 | |
|         y = memoryview(x)
 | |
|         del y
 | |
|         del x
 | |
| 
 | |
|         x = staticarray()
 | |
|         y = ndarray(x, getbuf=PyBUF_FULL_RO)
 | |
|         z = ndarray(y, getbuf=PyBUF_FULL_RO)
 | |
|         m = memoryview(z)
 | |
|         self.assertIs(y.obj, x)
 | |
|         self.assertIs(m.obj, z)
 | |
|         self.verify(m, obj=z,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         del x, y, z, m
 | |
| 
 | |
|         x = staticarray()
 | |
|         y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         m = memoryview(z)
 | |
|         self.assertIs(y.obj, x)
 | |
|         self.assertIs(z.obj, x)
 | |
|         self.assertIs(m.obj, x)
 | |
|         self.verify(m, obj=x,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         del x, y, z, m
 | |
| 
 | |
|         # view.obj==NULL
 | |
|         x = staticarray(legacy_mode=True)
 | |
|         y = memoryview(x)
 | |
|         self.verify(y, obj=None,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         for i in range(12):
 | |
|             self.assertEqual(y[i], i)
 | |
|         del x
 | |
|         del y
 | |
| 
 | |
|         x = staticarray(legacy_mode=True)
 | |
|         y = memoryview(x)
 | |
|         del y
 | |
|         del x
 | |
| 
 | |
|         x = staticarray(legacy_mode=True)
 | |
|         y = ndarray(x, getbuf=PyBUF_FULL_RO)
 | |
|         z = ndarray(y, getbuf=PyBUF_FULL_RO)
 | |
|         m = memoryview(z)
 | |
|         self.assertIs(y.obj, None)
 | |
|         self.assertIs(m.obj, z)
 | |
|         self.verify(m, obj=z,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         del x, y, z, m
 | |
| 
 | |
|         x = staticarray(legacy_mode=True)
 | |
|         y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
 | |
|         m = memoryview(z)
 | |
|         # Clearly setting view.obj==NULL is inferior, since it
 | |
|         # messes up the redirection chain:
 | |
|         self.assertIs(y.obj, None)
 | |
|         self.assertIs(z.obj, y)
 | |
|         self.assertIs(m.obj, y)
 | |
|         self.verify(m, obj=y,
 | |
|                     itemsize=1, fmt=fmt, readonly=True,
 | |
|                     ndim=1, shape=[12], strides=[1],
 | |
|                     lst=lst)
 | |
|         del x, y, z, m
 | |
| 
 | |
|     def test_memoryview_getbuffer_undefined(self):
 | |
| 
 | |
|         # getbufferproc does not adhere to the new documentation
 | |
|         nd = ndarray([1,2,3], [3], flags=ND_GETBUF_FAIL|ND_GETBUF_UNDEFINED)
 | |
|         self.assertRaises(BufferError, memoryview, nd)
 | |
| 
 | |
|     def test_issue_7385(self):
 | |
|         x = ndarray([1,2,3], shape=[3], flags=ND_GETBUF_FAIL)
 | |
|         self.assertRaises(BufferError, memoryview, x)
 | |
| 
 | |
|     @support.cpython_only
 | |
|     def test_pybuffer_size_from_format(self):
 | |
|         # basic tests
 | |
|         for format in ('', 'ii', '3s'):
 | |
|             self.assertEqual(_testcapi.PyBuffer_SizeFromFormat(format),
 | |
|                              struct.calcsize(format))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 |